Or search by topic
The algebraic expression for $r$th triangular number is
$$T_r = \frac{1}{2} r(r+1) $$
The expression that you are trying to evaluate is $$\sum_{r=1}^{n} \frac{1}{T_r} = \frac{1}{T_1} + \frac{1}{T_2} + \frac{1}{T_3} + ... + \frac{1}{T_n} \cong 2 $$
Find $S_r = 1^r + 2^r + 3^r + ... + n^r$ where r is any fixed positive integer in terms of $S_1, S_2, ... S_{r-1}$.
Make a conjecture about the sum of the squares of the odd positive integers. Can you prove it?