Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Common Divisor

Age 14 to 16
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

The problem was to find the largest integer which divides every member of the following sequence:

\[1^5-1,\ 2^5-2,\ 3^5-3,\cdots\ n^5-n.\]

The solution depends only on a little algebra and some clear mathematical thinking.

Pierre, Tarbert Comprehensive, Ireland, Prateek, Riccarton High School, Christchurch, New Zealand and Vassil from Lawnswood Sixth Form, Leeds started by taking small values of $n$, usually a good way to begin. This solution comes from Arun Iyer, S.I.A High School and Junior College, India. They all found the answer which is $30$.

Given the sequence $1^5-1,\ 2^5-2,\ 3^5-3,\cdots \ n^5-n$ we see that

\[n^5 - n = n(n^4 - 1) = n(n - 1)(n + 1)(n^2 + 1)\]

and it is quite easy to see that $n(n-1)(n+1)(n^2+1)$ is divisible by $2$, $3$ and $5$ for all values of $n$. As $n$, $(n-1)$ and $(n+1)$ are three consecutive integers their product must be divisible by $2$ and by $3$. If none of these numbers is divisible by $5$ then $n$ is either of the form $5k+2$ or $5k+3$ for some integer $k$ and in both of these cases we can check that $n^2 + 1$ is divisible by $5$. Since $2$, $3$ and $5$ are coprime therefore $n^5 - n$ is divisible by $2 \times 3 \times 5$ i.e by $30$.

Since the second term of the sequence is $2^5-2 = 30$ therefore the divisor cannot be greater than $30$. Therefore $30$ is the largest number that d ivides each member of the sequence.

You may also like

N000ughty Thoughts

How many noughts are at the end of these giant numbers?

DOTS Division

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Mod 3

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo