Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Big, Bigger, Biggest

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Student Solutions

Which is the biggest and which the smallest of these numbers and how do they compare in magnitude?

$$A = 2000^{2002},\ B = 2001^{2001},\ C = 2002^{2000}$$

This solution comes from Ilham, St. Patrick's College, Wellington, well done and thank you Ilham.

First let's define the function floor($x$), where $x$ is a real number, such that floor($x$) = the integer part of $x$.

Let $$y = \rm{floor}(\log_a (x)) + 1$$.

As a general rule, y will be the number of digits of $x$ in base $a$. If we reverse this, we can say that $x$ is somewhere between $a ^ y$ and $a^{y + 1}$.

Another basic rule is $\log_a (b^c) = c\log_a (b)$. If we don't use this rule, the calculation cannot be handled using any standard scientific calculators, as they can't handle calculation with numbers greater than $10^{100}$.

If we use these two rules to $A$, $B$ and $C$ in base $10$, it will show that $A$ has $6609$ digits, $B$ has $6606$ digits, and $C$ has $6603$ digits in base 10.

Therefore, $A$ is bigger than $B$ which in turn is bigger than $C$. $A$ is the biggest, and $C$ is the smallest.

A similar solution uses the fact that the logarithm function is an increasing function so it follows that $$\log A > \log B$$ if and only if $A > B$. Hence

$$\log A = 2002 \log 2000 \approx 2002(3.010) \approx 6608.662$$ $$\log B = 2001 \log 2001 \approx 6605.795$$ $$\log C = 2000 \log 2002 \approx 6602.928$$

The approximate difference is given by : $\log A - \log B = \log A/B \approx 3$, hence $A\approx 10^3B$. Similarly $B\approx 10^3C$. Thus $A > B > C.$

Here is Koopa Koo's more general result.

Claim: $A > B > C$

Proof: $A > B$ if and only if $\log A > \log B.$

I shall prove $\log A - \log B > 0$ i.e. $2002\log2000 - 2001\log2001 > 0.$

Let $f(x) = (x + 2)\log x - (x+1)\log(x+1)$ so that for example f(2) = 4log2 - 3log3.

Differentiating this function, $$f'(x) = (x + 2)/x + \log x - 1 - \log(x + 1) = 2/x -\log[(x+1)/x].$$

This derivative is positive if and only if $e^{2/x}> (x+1)/x.$

Using $e^y > 1 + y$ for all $y$, let $y = 2/x$.

We have $e^{2/x}> 1 + 2/x = (x + 2)/x > (x + 1)/x$.

So the function f is increasing, in particular, $f(2000) = \log A - \log B > 0$ and it follows that $A > B$.

The proof that $B > C$ is similar.

You may also like

Telescoping Series

Find $S_r = 1^r + 2^r + 3^r + ... + n^r$ where r is any fixed positive integer in terms of $S_1, S_2, ... S_{r-1}$.

Growing

Which is larger: (a) 1.000001^{1000000} or 2? (b) 100^{300} or 300! (i.e.factorial 300)

Climbing Powers

$2\wedge 3\wedge 4$ could be $(2^3)^4$ or $2^{(3^4)}$. Does it make any difference? For both definitions, which is bigger: $r\wedge r\wedge r\wedge r\dots$ where the powers of $r$ go on for ever, or $(r^r)^r$, where $r$ is $\sqrt{2}$?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo