Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cosy Corner

Age 11 to 14
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem offers an opportunity to explore and discuss two types of probability: experimental and theoretical. The simulation generates lots of experimental data quickly, freeing time to focus on predictions, analysis and justifications.

Possible approach

Demonstrate the interactivity a few times, explaining that to win, at least one corner needs to contain a red ball.
Invite students to estimate the probability of winning. Allow students some thinking and discussion time in pairs before bringing them together to state their initial conjectures.
Students may find this Recording Sheet useful, to work out the different possible outcomes.
Record their conjectures on the board and then run the interactivity a few hundred times. Then revisit students' conjectures and discuss which ones matched the experimental data, before rounding the activity off by discussing which methods for recording the different combinations were both successful and efficient.

Key questions

Are there efficient systems for recording the different possible combinations?
What counts as a different outcome?
If the red balls are in the same position but a blue and yellow ball swap places, does that count as a different outcome?

Possible support

An alternative problem for exploring theoretical and experimental probability is Flippin' Discs

Possible extension

A follow-up problem could be Two's Company


Teachers may want to use this recording tool to gather the results of other similar experiments that their students are carrying out:






 

You may also like

Stop or Dare

All you need for this game is a pack of cards. While you play the game, think about strategies that will increase your chances of winning.

Snail Trails

This is a game for two players. Does it matter where the target is put? Is there a good strategy for winning?

Game of PIG - Sixes

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo