Or search by topic
First prove that $k \times k! = (k+1)! - k!$
Find $S_r = 1^r + 2^r + 3^r + ... + n^r$ where r is any fixed positive integer in terms of $S_1, S_2, ... S_{r-1}$.
Make a conjecture about the sum of the squares of the odd positive integers. Can you prove it?