Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Half a Triangle

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Well done Arun from National Public School, Bangalore, India, some quality thinking in devising this solution.

We are given a triangle $ABC$ , and are required to draw a line $DE$ parallel to $CB$ such that it divides the triangle into $2$ of equal areas.

The area of triangle $ABC$ is double the area of $AED$.

But, $ADE$ and $ACB$ are similar triangles because $DE$ is parallel to $CB$

We also know that the ratio of the areas of the two similar triangles is equal to the ratio of the squares of corresponding sides.

Which means that the line ratio $AD$:$AC$ must be $1 : \sqrt{2}$
The problem becomes : how to locate $D$ to achieve this ratio.

A square of side length $1$ has a diagonal length of$ \sqrt{2}$

or, put another way, an isosceles right-angled triangle has a hypotenuse $ \sqrt{2}$ times bigger than the other sides.

Here is a construction to achieve this required ratio.

$X$ is any suitable point on $AD$

$ZX$ is perpendicular to $AC$, and $ZX$ is equal in length to $AX$.

So $AXZ$ is an isosceles right-angled triangle.

By sweeping an arc centre $A$ from $X$ to $AZ$ at $N$, $AN$ is made equal to $AX$

$AN$ to $AZ$ is now in the required ratio.

Drawing from $N$ parallel to $ZC$ the point $D$ is reached.

Because $AND$ and $AZC$ are similar triangles, $AD$ and $AC$ are in the required ratio.

Excellent and simple!


You may also like

Golden Thoughts

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

At a Glance

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

Contact

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo