Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Colour Building

Age 11 to 14
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem ?

This problem provides an opportunity for students to work systematically, and to discover the powerful technique of using smaller cases to predict and explain what will happen with larger cases. 

Possible approach

The problem assumes some familiarity with Cuisenaire rods, so if students are not familiar with the different colours and lengths, it may be worth spending some time first exploring a set of rods or using the online environment.

"I wonder how many different ways we could combine white rods (1) and red rods (2) to make the same length as the orange rod (10) ..."

Give students some time to think about the challenge, and then share their thoughts. The following might emerge:
"There are going to be loads of different ways"
"How are we going to be able to make sure we don't miss any?"

If no-one has suggested it: "Perhaps we could work on a simpler version of the problem to see if that helps. Let's see how many ways we could make the pink rod (4) out of whites and reds."
Once students have agreed on the five ways that a pink can be made from whites and reds, invite them to find the number of ways to make light green (3), yellow (5), and dark green (6). Then encourage them to make a prediction for black (7) and then test it out.

It is important to set aside enough time for students to think about and appreciate why each answer is the sum of the previous two. To draw out this insight, you might suggest that students organise their work into two categories: solutions that start with a red (what's left?) and solutions that start with a white (what's left now?)

Key questions

Is there a way to work systematically to make sure you have found all the possibilities?

When we make the length of the pink rod, how many possibilities have a red on the left?
How many possibilities have a white on the left?

Can you use this idea of thinking separately about the solutions that begin with a red, and the ones that begin with a white, to help you explain the patterns that you find?
 

Possible extension

Students could try 1 Step 2 Step, which has the same mathematical structure but set in a different context.

Possible support

Focus on how to work systematically to find all the solutions for smaller cases before introducing the orange rod challenge.

You may also like

Tea Cups

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Painting Cubes

Imagine you have six different colours of paint. You paint a cube using a different colour for each of the six faces. How many different cubes can be painted using the same set of six colours?

Lesser Digits

How many positive integers less than or equal to 4000 can be written down without using the digits 7, 8 or 9?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo