John Lesieutre from State College Area High
School, Pennsylvania, USA and Marcos Charalambides from Cyprus sent
in excellent solutions to this problem.
Using q(x)=1 we get 2=\Lambda_1+\Lambda_2+\Lambda_3.
Using q(x)=x we get
0=\Lambda_1\sqrt{\frac{3}{5}}+\Lambda_3\sqrt{\frac{3}{5}} so
\Lambda_1=\Lambda_3.
Using q(x)=x^2 we get
\frac{2}{3}=\frac{3\Lambda_1}{5}+\frac{3\Lambda_3}{5}=
\frac{6\Lambda_1}{5} so \Lambda_1=\frac{5}{9}=\Lambda_3 and
\Lambda_2=\frac {8}{9}.
Now if q(x)=a+b x+c x^2 (that is, a general quadratic), then
\int_{-1}^1 a+b x+c x^2 \mathrm{d}x=2a+\frac{2c}{3}, and
\Lambda_1 q\left(-\sqrt{\frac{3}{5}}\right)+\Lambda_2
q\left(0\right)+\Lambda_3
q\left(\sqrt{\frac{3}{5}}\right)=\frac{5}{9}\left(a-b\sqrt{\frac{3}{5}}+\frac{3
c}{5}\right)+\frac{8a}{9}+\frac{5}{9}\left(a+b\sqrt{\frac{3}{5}}+\frac{3c}{5}\right)
=\frac{10a}{9}+\frac{8a}{9}+\frac{2c}{3} =2a+\frac{2c}{3} so the
formula works for all quadratics.
Using the same idea as above, to check that it works for cubics,
quartics and quintics, we only have to check it for x^3, x^4
and x^5.
\int_{-1}^1 x^3\mathrm{d} x = 0 and
\frac{5}{9}\left(-\frac{3}{5}\sqrt{\frac
{3}{5}}\right)+\frac{5}{9}\left(\frac{3}{5}\sqrt{\frac{3}{5}}\right)=0.
\int_{-1}^1 x^4\mathrm{d} x=\frac{2}{5} and
\frac{5}{9}\left(\frac{9}{25}\right)
+\frac{5}{9}\left(\frac{9}{25}\right)=\frac{2}{5}.
\int_{-1}^1 x^5\mathrm{d} x=0 and
\frac{5}{9}\left(-\frac{9}{25}\sqrt{\frac{
3}{5}}\right)+\frac{5}{9}\left(-\frac{9}{25}\sqrt{\frac{3}{5}}\right)=0.
\int_{-1}^1 x^6\mathrm{d} x=\frac{2}{7} but
\frac{5}{9}\left(\frac{27}{125}
\right)+\frac{5}{9}\left(\frac{27}{125}\right)=\frac{6}{25}.
So the formula works for cubics, quartics and quintics, but not for
higher powers.