Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Pebbles

Age 7 to 11
Challenge Level Yellow starYellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Pebbles


Imagine that you're walking along the beach, a rather nice sandy beach with just a few small pebbles in little groups here and there. You start off by collecting just four pebbles and you place them on the sand in the form of a square. The area inside is of course just $1$ square something, maybe $1$ square metre, $1$ square foot, $1$ square finger ... whatever.

1sq1

By adding another $2$ pebbles in line you double the area to $2$, like this:

2sq2

The rule that's developing is that you keep the pebbles that are down already (not moving them to any new positions) and add as FEW pebbles as necessary to DOUBLE the PREVIOUS area, using RECTANGLES ONLY!

So, to continue, we add another three pebbles to get an area of $4$:

3sq3

You could have doubled the area by doing:

4sq4

But this would not obey the rule that you must add as FEW pebbles as possible each time. So this one is not allowed.

Number 6 would look like this:

5b

sq5

So remember:-

The rule is that you keep the pebbles that are down already (not moving them to any new positions) and add as FEW pebbles as necessary to DOUBLE the PREVIOUS area.

Well, now it's time for you to have a go.

"It's easy,'' I hear you say. Well, that's good. But what questions can we ask about the arrangements that we are getting?

We could make a start by saying "Stand back and look at the shapes you are getting. What do you see?'' I guess you may see quite a lot of different things.

It would be good for you to do some more of this pattern. See how far you can go. You may run out of pebbles, paper or whatever you may be using. (Multilink, pegboard, elastic bands with a nail board, etc.)

Well now, what about some questions to explore?
Here are some I've thought of that look interesting:

  1. How many extra pebbles are added each time? This starts off $2$, $3$, $6$ ...
  2. How many are there around the edges? This starts off $4$, $6$, $8$ ...
  3. How big is the area? This starts off $1$, $2$, $4$ ...
  4. How many are there inside? This starts off $0$, $0$, $1$, $3$, $9$ ...

Try to answer these, and any other questions you come up with, and perhaps put them in a kind of table/graph/spreadsheet etc.

Do let me see what you get - I'll be most interested.

Don't forget the all-important question to ask - "I wonder what would happen if I ...?''

 

Why do this problem?

Use this activity to introduce children to an investigation that mixes both shape and space work with number work. You could also introduce learners to this extended piece of work to help you look at perseverence and persistence.

Possible approach

A good introduction can be had with the whole class by making the first two or three arrangements all together. It is useful to have squared and dotted (squares) paper available whilst some pupils may benefit from using blocks (such as multilink) to represent the pebbles. You may also find it helpful to use a virtual geoboard for sharing ideas amongst the whole group.

After children have worked in pairs for a time, investigating subsequent arrangements, you can pose some of the suggested questions (for example looking at the number of pebbles added each time) and invite them to ask and explore their own questions. Encourage record keeping in whatever form the pupils feel is appropriate.

Key questions

What are you counting? (Sometimes there is confusion about the counting of the pebbles and the counting of the spaces in between them - particularly along the lengths of sides.)
Is this rectangle double the size of the last one?
How are you recording what you have done?

Possible extension

Some pupils may produce a table or a spreadsheet of their results which would enable them to explore further.

Here is an example of many results that lead to the consideration of the digital roots (d.r.):

Alternatively, Making Squares is an extension activity.

For more extension work

Go to More Pebbles.

Possible support

Children may benefit from adult support in keeping track of where they are in their exploration. They could be helped to proceed as if it were a game.

You may also like

Bracelets

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

Sweets in a Box

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Making Boxes

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo