Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Counting Factors

Age 11 to 14
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Counting Factors printable sheet
 

Charlie wants to know how many factors 360 has.
How would you work it out?

 

Click below to see what Alison did.
 


Alison divided 360 by each number in turn to see if it was a factor, and wrote down the factor pairs:
 
(1, 360)
(2, 180
(3, 120)
(4, 90)
(5, 72)
(6, 60)
(8, 45)
(9, 40)
(10, 36)
(12, 30)
(15, 24)
(18, 20)

"I can stop there, because the next factor would be 20 and I've already got that. So there are 24 factors."


Charlie thought about it in a different way. Click below to see what he did.


Charlie started by working out the prime factorisation of 360.


$$\begin{align} 360 &= 2 \times 180 \\ &= 2 \times 2 \times 90 \\ &= 2 \times 2 \times 2 \times 45 \\ &= 2 \times 2 \times 2 \times 3 \times 15 \\ &= 2 \times 2 \times 2 \times 3 \times 3 \times 5 \end{align}$$

So $360 = 2^3 \times 3^2 \times 5$.
 
Then he made a table to list the 24 possible combinations of the prime factors.
 

$2^0$

$3^0$

$5^0$

$5^1$

$3^1$

$5^0$

$5^1$

$3^2$

$5^0$

$5^1$

$2^1$

$3^0$

$5^0$

$5^1$

$3^1$

$5^0$

$5^1$

$3^2$

$5^0$

$5^1$

$2^2$

$3^0$

$5^0$

$5^1$

$3^1$

$5^0$

$5^1$

$3^2$

$5^0$

$5^1$

$2^3$

$3^0$

$5^0$

$5^1$

$3^1$

$5^0$

$5^1$

$3^2$

$5^0$

$5^1$


So the top branch gives us $2^0 \times 3^0 \times 5^0 =1$ 
the second branch gives us $2^0 \times 3^0 \times 5^1 =5$
the third branch gives us $2^0 \times 3^1 \times 5^0 =3$ 
the fourth branch gives us $2^0 \times 3^1 \times 5^1 =15$...
... and the eleventh branch gives us $2^1 \times 3^2 \times 5^0 = 18$


When she saw Charlie's method, Alison said "There must be lots of numbers which have exactly 24 factors!"

Charlie and Alison think all of these numbers have exactly 24 factors.
Can you use Charlie's method to explain why?

$25725 = 5^2 \times 3^1 \times 7^3$
$217503 = 11^1 \times 13^3 \times 3^2$
$312500 = 5^7 \times 2^2$
$690625 = 17^1 \times 13^1 \times 5^5$
$94143178827 = 3^{23}$

Here are some questions to consider:

How can I find a number with exactly 14 factors?
How can I find the smallest such number?

How can I find a number with exactly 15 factors?
How can I find the smallest such number?

How can I find a number with exactly 18 factors?
How can I find the smallest such number?

Which numbers have an odd number of factors?

Extension:

What is the smallest number with exactly 100 factors?

Which number less than 1000 has the most factors?



You may be interested in the other problems in our Hidden Treasures Feature.

 

 

You may also like

Adding All Nine

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!

Have You Got It?

Can you explain the strategy for winning this game with any target?

Summing Consecutive Numbers

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo