Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Litov's Mean Value Theorem

Age 11 to 14
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Well done to Ken from Blessed Robert Johnson Catholic School who sent us his solution to this problem:

After a while of playing with the numbers on a spreadsheet I have discovered that the formula to find the "limiting value" for $2$ starting numbers is: $$\frac{x+2y}{3}$$ where $x$ is the first number chosen and $y$ is the second number chosen.

The formula to find the "limiting value" for 3 starting numbers will be: $$\frac{x+2y+3z}{6}$$

Some older students also worked on this problem. Terence from Brumby Engineering College has made a prediction for what the limit will be when there are $n$ starting numbers. He thinks it will be
$$\frac{a_1+2a_2+3a_3+4a_4+\ldots+(n-1)a_{n-1}+n a_n}{\frac{1}{2}n(n+1)}$$ where $a_1$, $a_2$, $\ldots$, $a_{n-1}$ and $a_n$ are the $n$ starting numbers.

Can you see why Terence has made this prediction?
As mathematicians, we like to prove our answers, rather than just predict. Here is an outline of how we might prove the formula when there are two starting numbers.

Suppose that the first two numbers are $a$ and $b$. Let's work out the next few terms of the sequence. We have

$$a,\:b,\:\frac{a+b}{2},\:\frac{a+3b}{4},\:\frac{3a+5b}{8},\: \frac{5a+11b}{16},\:\frac{11a+21b}{32},\:\frac{21a+43b}{64}$$ and so on. We'd like to show that in the limit the coefficient of $b$ is twice the coefficient of $a$, and also that the sum of these coefficients is the denominator. Can you see why this will prove the formula?

The $n^{\textrm{th}}$ term in the sequence is of the form $$\frac{ \alpha_n a+\beta_n b}{2^{n-2}}$$ (for $n\geq 2$). We can work out $\alpha_n$ in terms of $\alpha_{n-1}$ and $\alpha_{n-2}$. Can you see how?

We have $\alpha_n=\alpha_{n-1}+2\alpha_{n-2}$ (for $n\geq 4$). Similarly, we have $\beta_n=\beta_{n-1}+2\beta_{n-2}$ (for $n\geq 4$).

It turns out that we can use these formulae to prove that $\beta_n=2\alpha_n +(-1)^n$ (for $n\geq 2$). Test this formula on the above examples to see that it works for these cases.

We'd like to show that as $n$ tends to infinity, $\beta_n$ becomes twice $\alpha_n$. Let's think about $\beta_n/\alpha_n$. From the above formula, this is $2+(-1)^n/\alpha_n$. But $\alpha_n$ is getting bigger and bigger, so the $(-1)^n/\alpha_n$ part of this gets smaller and smaller. In fact, it tends to $0$, and so the limit of the whole expression is $2$.

It is also possible to use the formulae for $\alpha_n$ and $\beta_n$ to show that $\alpha_n+\beta_n=2^{n-2}$ (for $n\geq 3$) (that is, the coefficients of $a$ and $b$ sum to the number on the bottom of the fraction). Again, test this formula on the examples above.

Combining the last two paragraphs, we find that the limit of the sequence is $$\frac{a+2b}{3}$$ as predicted.

You may also like

Bat Wings

Two students collected some data on the wingspan of bats, but each lost a measurement. Can you find the missing information?

Kate's Date

When Kate ate a giant date, the average weight of the dates decreased. What was the weight of the date that Kate ate?

Balancing the Books

How many visitors does a tourist attraction need next week in order to break even?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo