Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Is There a Theorem?

Age 11 to 14
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions


Imagine a square with sides of length $10$cm. This square will be fixed: think of it as being glued to the page.

Imagine a second square, of the same size, that slides around the first, always maintaining contact and keeping the same orientation.

In the interactivity below, the second square is red. It has a dot on its top left hand corner.

How far does the dot travel before returning to its starting point?
Try to predict the distance before using the interactivity to check your answer.

 

Change the position of the dot.
How does this affect the distance travelled by the dot?

Change the size of the second square.
What can you now say about the distance travelled by the dot?

Try the same problem with triangles or hexagons instead of squares
(remember your second shape is not allowed to rotate, or overlap with the original shape).

What happens if there are two different shapes?

Is there a theorem here?

 


Here are two related problems you might like to take a look at:
Rolling Around
Rollin' Rollin' Rollin'
 

 

You may also like

Khun Phaen Escapes to Freedom

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Frieze Patterns in Cast Iron

A gallery of beautiful photos of cast ironwork friezes in Australia with a mathematical discussion of the classification of frieze patterns.

The Frieze Tree

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo