Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

More Magic Potting Sheds

Age 11 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Well done to Liam from Wilbarston School and Ruth from Manchester High School for Girls for sending us their work on this problem.

Here is Liam's work on the problem for a Magic Growth Factor of 3. He used some ideas from his solution to Magic Potting Sheds to get started.

Let's start by saying there are going to be $27$ plants in each field. In Magic Potting Sheds I used $8$ which is $2^3,$ so for magical growth factor $3$ I'll try $3^3.$ ($9$ doesn't work, because the morning of the day Mr McGregor planted the 1st garden he should have had 13 plants - a number which is not divisible by $3$.)

Now, working back from the last garden, there must have been $9$ after Mr McGregor planted his 2nd garden. Now as there has to be the same number of plants in each garden, before he planted his 2nd garden he had to have had $36$ ($9+27$) plants... which means that he had $12$ plants after planting $27$ in his 1st garden making $39$ altogether... which is $3$ times $13$.

You must start with $13$ in order to get $27$ in each garden.
Liam also used the same method to see that for a magic growth factor of $4$, Mr McGregor would need to plant $64$ plants in each garden, and would need $21$ plants at the beginning.

Ruth, from Manchester High School for Girls, used algebra to find what Mr McGregor needs to do in each situation. Well done!

If the shed multiplies the number of plants by $x$ every night, you start with $x^2 + x + 1$ plants and plant $x^3$ every day. After the first night you have $x^3+x^2+x$ and plant $x^3$, leaving $x^2 + x$. After the second night you have $x^3+x^2$ then plant $x^3$ so you have $x^2$ which becomes $x^3$ to plant on the third day.

If you have $n$ nights instead of 3, you start with $x^{n-1} + x^{n-2} + \ldots + x^2 + x + 1$ plants and plant $x^n$ every day.
After the first day you have $x^n + x^{n-1} + \ldots + x^3 + x^2 + x$ and plant $x^n$.
Every night each term's exponent is increased by $1$ and when you plant $x^n$ plants you remove $1$ term until on the $n^{th}$ day the term that started as $1$ is $x^n$ and the last lot of plants left.

When the numbers of plants halves each night, the smallest solution is to plant 1 plant each day. You need $2^{1}+2^{2}+2^{3}=14$ plants. Each night the exponent decreases and when you plant you get rid of a term. If you have $n$ nights you start with $2^{1}+2^{2}+2^{3}+ \ldots +2^{n-2}+2^{n-1} +2^{n}=2^{n+1}-2$.

When the number of plants is divided by $y$ you start with $y^1+y^{2}+y^{3}+ \ldots + y^{n-2}+y^{n-1}+y^{n}=\frac{y^{n+1}-y}{y-1}$ and plant $1$ each day.

Ruth also extended her solution one step beyond what we had asked.

When the number of plants is multiplied by $\frac{x}{y}$, you need $x^{n-1} y^{1} + x^{n-2} y^{2}+\ldots + x^{2} y^{n-2} + x^{1} y^{n-1}+ x^{0}y^{n}$ plants for $n$ nights and plant $x^{n}$ each night.

You may also like

Adding All Nine

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!

Double Digit

Choose two digits and arrange them to make two double-digit numbers. Now add your double-digit numbers. Now add your single digit numbers. Divide your double-digit answer by your single-digit answer. Try lots of examples. What happens? Can you explain it?

More Mods

What is the units digit for the number 123^(456) ?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo