Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Gambling at Monte Carlo

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Student Solutions

At first you may think that all the probabilities are the same, but consider a similar problem about tossing coins. The probability of one head with one coin is 1/2, the probability of two heads with two coins is 1/4 and the probability of three heads with three coins is 1/8, definitely not the same!

The problem given was difficult and it might be best understood by considering a similar, but simpler, problem.

Which is more likely, at least 1 six from rolling two dice or at least 2 sixes from rolling 4 dice?

To find the solution we use the fact that the probabilities must sum to 1:

The probability of at least 1 six from 2 dice = 1 - probability of no sixes from 2 dice
\begin{align*}
&= 1 - \left(\frac{5}{6}\right)^2 \\
&= 1 - \frac{25}{36} \\
&= \frac{11}{36} \\
&= 0.306\quad\text{(3.d.p.)}
\end{align*}
 

The probability of at least 2 sixes from 4 dice = 1 - probability of no sixes from 4 dice - probability of 1 six from 4 dice
\begin{align*}
&= 1 - \left(\frac{5}{6}\right)^{4} - 12\times\frac{1}{6}\times\left(\frac{5}{6}\right)^{3} \\
&= 1 - \frac{625}{1296} - \frac{500}{1296} \\
& = \frac{171}{1296} \\
&= 0.132\quad\text{(3.d.p.)}
\end{align*}
 

A similar argument for the original problem follows, where $\mathbb{P}(\text{something})$ means 'the probability of something occurring'.

\begin{align*}
\mathbb{P}(\text{at least 1 six from 6 dice}) &= 1 - \left(\frac{5}{6}\right)^6 \\
&= 0.665\quad\text{(3.d.p.)}
\end{align*}
 

\begin{align*}
\mathbb{P}(\text{at least 2 sixes from 12 dice}) &= 1 - \left(\frac{5}{6}\right)^{12} - 12\times\frac{1}{6}\times\left(\frac{5}{6}\right)^{11} \\
&= 0.619\quad\text{(3.d.p.)}
\end{align*}


\begin{align*}
\mathbb{P}(\text{at least 3 sixes from 18 dice}) &= 1 - \left(\frac{5}{6}\right)^{18} - 18\times\frac{1}{6}\times\left(\frac{5}{6}\right)^{17} - 153\times\left(\frac{1}{6}\right)^2\times\left(\frac{5}{6}\right)^{16}\\
&= 0.597\quad\text{(3.d.p.)}
\end{align*}

The person gambling at Monte Carlo would have gained the best advantage from choosing to gamble on "at least 1 six from six dice". This had the highest probability.

You may also like

Marbles and Bags

Two bags contain different numbers of red and blue marbles. A marble is removed from one of the bags. The marble is blue. What is the probability that it was removed from bag A?

Coin Tossing Games

You and I play a game involving successive throws of a fair coin. Suppose I pick HH and you pick TH. The coin is thrown repeatedly until we see either two heads in a row (I win) or a tail followed by a head (you win). What is the probability that you win?

Win or Lose?

A gambler bets half the money in his pocket on the toss of a coin, winning an equal amount for a head and losing his money if the result is a tail. After 2n plays he has won exactly n times. Has he more money than he started with?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo