Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Card Trick 2

Age 11 to 14
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions

You may have found that this trick does not work if the fourth card from the bottom is the same numerical value and colour as one of the 3 chosen cards or as the first, second or third card from the bottom, a probability of 6/45. When the 'magician' looks at the cards and sees that this has happened the best thing is to carry on with the trick but first to say that the cards should be shuffled again and give some convincing reason!

SUGGESTED SOLUTION

The card which the volunteer keeps will always be the fourth card from the bottom of the pack which has the same numerical value and colour as the predicting card. This is because, whatever 3 cards are selected by the volunteer, with these 3 cards and the predicting card, 4 cards are removed from the pack. Then 45 cards are counted out, and this leaves the last 3 cards to make up 52 altogether. Suppose the 3 cards selected have values x , y and z then the number of cards counted out is (15 - x ) + (15 - y ) + (15 - z ) + x + y + z = 45.

Correct solutions were sent in by:

Sarah - Archbishop Sancroft High School


You may also like

Painting Cubes

Imagine you have six different colours of paint. You paint a cube using a different colour for each of the six faces. How many different cubes can be painted using the same set of six colours?

Cube Paths

Given a 2 by 2 by 2 skeletal cube with one route `down' the cube. How many routes are there from A to B?

How Many Dice?

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find there are 2 and only 2 different standard dice. Can you prove this ?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo