Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Roll These Dice

Age 7 to 11
Challenge Level Yellow starYellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
Molly from Churchers College Junior School sent in these well thought out ideas about this activity.

* I have found out that all the different possible answers are between $ -4$ and $11$ including $11$ and $-4$. It is not possible to get any answers over $11$ and below $-4$.
I recorded all of this data in a table.
* I have found out that if all $3$ dice are the same the total will become the value of one of the die ( Eg. $1+1=2-1=1$ ).
* this would be the same conclusion as above if any $2$ of the die were the same. (E.g. $2+1=3-1=2$)
* I know there is a $50/50$ chance of the answer being odd or even because;
odd + odd - odd = odd
even + even - even = even
odd + even - odd = even
odd + odd - even = even
even + even - odd = odd
odd + even - even = odd   
These are all the posible ways of adding the dice.
Thank you for reading my solution I hope all is correct.
Molly        ;-)
Indeed Molly it is very good and I am impressed that you did this and came to those conclusions. You could of course extend the exploration by wondering about using $4$ dice and deciding whether to subtract just $1$ of those or maybe $2$.

Ben, Harry, Will and Lucas from Tarporley Church of England School also worked on this activity and this was their report:

There are four of us so two of us wrote ALL of the combinations down [one from $6+6-1$ and one from $1+1-6$]. There were $216$ possible calculations. At the same time the other two of us worked out which is the most likely answer[which is $4$]. Once we did that we were done.

Sion from the same school added this extra piece of information;

There are $225$ ways and your answer is the numbers $3$ and $4$. By finding all the $225$ calculations you then make a tally chart to show the most popular number.  Finally you count up the number and then your answer should be $3$ and $4$.

We also had a number of good ideas from North Molton, namely, Michael, Jack, Beth, James and Sam.
Bram”¨ from the British School of Bucharest”¨ in  Romania”¨, sent in what I think is the first from Romania, - well done and thanks - saying;

There is a higher probability to get $6$ than $2$ eg. there are fewer ways to get $2$ because there are $13$:

$1+2-1=2$ , $1+3-2=2$ , $1+4-3=2$ , $1+5-4=2$ , $1+6-5=2$ , $2+3-3=2$ , $2+4-4=2$, $2+5-5=2$ , $2+6-6=2$ , $3+3-4=2$ , $3+4-5=2$ , $3+5-6=2$ , $4+4-6=2$

and for $6$ there are:

$1+6-1=6$ , $2+5-1=6$ , $2+6-2=6$ , $3+4-1=6$ , $3+5-2=6$

Thanks you all, a great effort.

Related Collections

  • Playing with Dice

You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Domino Square

Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

4 Dom

Use these four dominoes to make a square that has the same number of dots on each side.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo