Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Tuning and Ratio

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

To understand how the notes are tuned in modern pianos, and why this system of tuning has been adopted, you need to understand the relationship of the intervals between the notes to the mathematical concept of logarithms.

One of the things you are asked to do in this problem is to find how many thirds there are in an octave using logarithms. Going back in history, musicians would have used other methods to calculate how many thirds in an octave because they did not know about logarithms. The problem Euclid's Algorithm and Musical Intervals is about a method they used.

There are many musical scales but in this problem we only consider the 12 note piano scale.

An octave is the interval from any note to the next occurrence of that note up or down the keyboard. There are 12 notes in an octave. The black notes on the piano keyboard are sharps or flats, for example the note between C and D is called C sharp or D flat.

The musical intervals correspond to the ratios of the lengths of the strings which vibrate to produce the notes, for example the octave is given by doubling (or halving) the length of the string. If you halve the length of a string the pitch rises an octave, that is from one C to the next C above it, or from one A to the next A above it, and so on, so the associated ratio for this musical interval is 2.

Similarly by taking 2/3 of the length of the string the pitch rises by what musicians call a fifth, that is from C to G and taking 3/4 the length the pitch goes up by a fourth, from C to F say. Pleasant harmonies arise from notes whose frequencies are related by simple ratios.

Taking eight-ninths of the original string gives the interval called the tone (C to D above it or anything similar).

If the interval between two notes is a ratio of small integers the notes sound good together. The pure intervals smaller than or equal to an octave are: 2/1 - the octave; 3/2 - the perfect fifth; 4/3 - the perfect fourth; 5/4 - the major third; 6/5 - the minor third; 5/3 - the major sixth and 8/5 - the minor sixth.

Although some of the intervals in the just intonation system are perfect, other combinations of notes sound very bad. With equal temperament, the intervals are never exact (except the octave), but they are very close - always within about one percent or better. The twelve-tone equal-tempered scale is the smallest equal-tempered scale that contains all six of the pure intervals 3/2, 4/3, 5/4, 6/5, 5/3, 8/5 to a good approximation - within one percent.

You may also like

Areas and Ratios

Do you have enough information to work out the area of the shaded quadrilateral?

Napoleon's Hat

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

Plane to See

P is the midpoint of an edge of a cube and Q divides another edge in the ratio 1 to 4. Find the ratio of the volumes of the two pieces of the cube cut by a plane through PQ and a vertex.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo