Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Compare Areas

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Many got the correct answer that the circle which is embedded inside the isosceles triangle is the largest of the three shapes.

Some students measured the diagrams given which luckily had been drawn accurately to scale, while others observed the symmetry of the isosceles triangle and the consequences of joining B to D the mid point of AC. To find the radius of the circle it helps to draw perpendiculars from the centre to the sides of the triangle.

Taking the lengths of the short sides of the triangle as $2$ units:

the radius of the circle is found to be $2-\sqrt{2}$ and the area to be $\pi (6 - 4\sqrt{2})$.

the side length of square one to be $1$ and area $1$;

and the side length of square two to be $\frac{2\sqrt{2}}{3}$ and area $\frac{8}{9}$.

Many students evaluated the ratio of the areas as $1.078 : 1: 0.889$ (to $3$ dec. places)

Ben and Adrian from the Simon Langton Grammar School for Boys used trig ratios, as did Hannah of Maidstone Girls Grammar School, to arrive at the same conclusions.


You may also like

Some(?) of the Parts

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

Triangle Incircle Iteration

Keep constructing triangles in the incircle of the previous triangle. What happens?

Medallions

Three circular medallions fit in a rectangular box. Can you find the radius of the largest one?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo