Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Marbles

Age 11 to 14
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions

Well explained solutions to this problem came from Anna of West Flegg Middle School, Avishek, Mark, Thomas, James and Ricardo of Simon Langton Boys' Grammar School, and Nodoey from Singapore.

I start with three marbles, 1 red, 1 green and 1 blue. I can trade any one marble for two others, one each of the other two colours. However many times I do this it is impossible to have a difference of 5 between the number of red and blue marbles because the difference between these two numbers is always even.

Suppose I trade one marble of any colour (say blue) for two others, then I will have two reds and two greens and no blues. If I then trade one of my marbles I will have one blue, one of another colour and three of the third colour. Each time I trade I receive one more marble in total but, more importantly I have alternately an even number of each colour then an odd number of each colour, then an even number, and so on. For example:

R    B    G
 
1    1    1
 
2    0    2
 
1    1    3
 
0    2    4
 
1    3    3
 

So the number of blue and the number of red marbles are always both even or both odd (this applies to every colour). So the difference between the number of reds and blues is always even and can never be five.

A further challenge:

You might like to improve on this solution by using vectors in the proof. You can learn about adding vectors by reading the article A Knight's Journey and apply the ideas to the Marbles problem.)


You may also like

More Marbles

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

Rolling Triangle

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

Nine Colours

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo