Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

A Sameness Surely

Age 14 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Student Solutions


David from Madras College, St. Andrews and Natalie from West Flegg Middle School, Norfolk correctly used congruent (n.b. not similar) triangles to show the sameness, having first constructed an altitude through C parallel to TS and PU. When equal angles and side lengths (SA and AC) are identified it is soon apparent that triangle CVA is congruent to triangle ATS and also that triangle CBV is congruent to BPU. Hence ST + PU = AB.

Jack and Jan at Necton Middle School "discovered that triangle STA together with triangle BUP, when rotated, will fit exactly into triangle ACB........." but don't state about which centres the rotations are to take place.

Another interesting approach here came without a name on it, from West Flegg MS again. This time after drawing CV perpendicular to TU, if you draw two squares one with side TV and the other with side VU , boxing in the original two squares, it is clear to see that ST + PU = AV + VB = AB.


You may also like

At a Glance

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

Darts and Kites

Explore the geometry of these dart and kite shapes!

No Right Angle Here

Prove that the internal angle bisectors of a triangle will never be perpendicular to each other.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo