Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Arrow Arithmetic 1

Age 14 to 16
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

This problem forms the first part of an investigation into how to represent numbers using geometric transformations that will ultimately lead us to discover numbers that are not on the number line.

I'm going to assume that you are happy with the idea of numbers that lie on the number line. Just to remind you, here is a picture of a small part of the number line.
The number line
The plan of action is to develop pictures or geometric representations of the numbers we know about already. We'll also develop ways to add, subtract, multiply and divide using just those pictures. Then we'll change the picture very slightly...

Here's my first attempt at a picture of the number 1. It's simply a blue arrow.
blue arrow equals one
I don't think this is a good enough picture yet, but it's helpful to think about its shortcomings.

Let's try to do arithmetic with these arrows. Try three simple additions.

3 additions
I tried these with three friends and here are the answers they gave me

Sam Hannah Tim
1) 3 3 3
2) -1 3 3
3) 1 3 2

They all had good explanations for their answers. Can you guess what they were?

My arrow picture obviously has some shortcomings! How would you improve it?

You may also like

A Story about Absolutely Nothing

This article for the young and old talks about the origins of our number system and the important role zero has to play in it.

Balance Power

Using balancing scales what is the least number of weights needed to weigh all integer masses from 1 to 1000? Placing some of the weights in the same pan as the object how many are needed?

Galley Division

Can you explain how Galley Division works?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo