Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Squares in Rectangles Poster

Age 11 to 14
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Student Solutions

 

There are three rectangles which contain $100$ squares:  $1 \times 100$, $4 \times 11$ and $5 \times 8$

 

 

Width:
 
 Height: 
 1 
 2 
 3 
 4 
 5 
6
7
1 1 2 3 4 5 6 7
2 2 5 8 11 14 17 20
3 3 8 14 20 26 32 38
4 4  11   20   30   40   50   60 
5 5 14 26 40 55 70 85
6 6 17 32 50 70 91 112
7  7   20   38   60  85  112   140 

If the height is $1$, increasing the width by $1$ increases the number of squares by $1$. This is because the only size of square that we can make is $1 \times 1$, so adding $1$ to the width adds just $1$ square. Eventually, when the rectangle is $1 \times 100$ there will be $100$ rectangles.

If the height is $2$, increasing the width by $1$ increases the number of squares by $3$. This is because when we add $1$ to the width, we can make $2$ additional $1 \times 1$ squares and $1$ additional $2 \times 2$ square. This is a total of $3$ extra squares.
If we continue the pattern $2, 5, 8, \ldots$ in the height of $2$ row (all $1$ less than multiples of $3$), we eventually get to $\ldots, 98, 101, \ldots$ - missing out $100$. This tells us that it isn't possible to make a rectangle with $100$ squares when the height (or width) is $2$.

If the height is $3$, increasing the width by $1$ allows us to make $3$ more $1 \times 1$ squares, $2$ more $2 \times 2$ squares and $1$ more $3 \times 3$ square. This is a total of $6 = 3 + 2 + 1$ squares. This gives us the sequence $14, 20, 26, 32, \ldots, 98, 104, \ldots$ (all $2$ more than multiples of $6$) which tells us that we can't make a rectangle with exactly $100$ squares when the height (or width) is $3$.

Using the same reasoning for height of $4$, we see that increasing the width by $1$ increases the number of squares by $10$, and that we can make rectangles with $20, 30, \ldots, 90, 100, 110, \ldots$ squares. $100$ is in this list! In fact, a $4 \times 11$ rectangle contains exactly $100$ squares.

We can repeat this for the other heights (or widths) in the table to find all the rectangles with exactly $100$ squares. These are $1 \times 100$, $4 \times 11$ and $5 \times 8$.

Related Collections

  • More Posters
  • Secondary Posters

You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Calendar Capers

Choose any three by three square of dates on a calendar page...

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo