Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Like a Circle in a Spiral

Age 7 to 16
Challenge Level Yellow star
  • Problem

One of my regular trips to Liverpool last summer took me to the Walker Art Gallery. A wonderful place with some beautiful pictures.

On my way out I stopped to browse in the small shop and discovered this toy for 50p.
Spirograph Toy

What a bargain and so many questions for you to think about.

Basically the toy has the three wheels with cogs along their circumference - the smallest is pink, the middle one blue and the largest yellow. It also has two circles (I have labelled them A and B in the picture). Circle A is smaller than circle B.

You need a pen or sharp pencil and lots of paper to practise with. You take a wheel and place it inside one of the two circles so that the two sets of cogs mesh, and then you put a pen or pencil in one of the small holes of the wheel and trace out pattern as the wheel moves around and turns inside the circle. Must admit it is hard not to slip so lots of practice is definitely necessary! Detail of wheel inside a circle
So here are some things for you to think about. It is important to remember that it is the argument you use to justify your decisions that is most important.

And a Wheel within a Wheel....

Detail of holes used to create the patterns Below are pictures of six patterns I made with the toy. There are six patterns because I used all three wheels twice in circle A to produce them. One pattern was made with the pencil in the inner most hole of the spiral and one by placing the pencil in the outer-most hole. So two positions and three wheels makes six patterns.



Can you work out which of the the three wheels with the pencil in which position make each of the following patterns:
Six patterns

Never Ending or Beginning....

The following three patterns were made with each of the three wheels. Can you work out which was made with the small, which with the medium and which with the large wheel?
Three patterns made from the three wheels
And here are a few more patterns to discuss. They are made with any of the three wheels in one of the two circles with the pencil in any one of the holes.

Final set

You may also like

Construct-o-straws

Make a cube out of straws and have a go at this practical challenge.

Matchsticks

Reasoning about the number of matches needed to build squares that share their sides.

Little Boxes

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo