Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Dating Made Easier

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

We have yet to receive a solution that uses only Level 4 mathematics, (so a solution that doesn't use logs) and so this problem has become Toughnut! See if you can crack it and send us your solution!

We have now received some excellent solutions for this Toughnut question. Patrick from Woodbridge School solved the first question by making a list of each years values:
 
Let x be the original value.
To add 10%, we multiply by 1.1, and we are trying to reach 2x. Thus, we get
x
1.1x
1.21x
1.331x
1.4641x
1.61051x
1.771561x
1.9487171x
2.14358881x
So, after 8 years, the sum has doubled.

To reduce a value by 10%, we multiply by 0.9, and we must reach 0.5x. Thus, we get
x
0.9x
0.81x 11
0.729x
0.6561x
0.59049x
0.531441x
0.4782969x
so after 7 years the sum has halved in value. 

Alexandra, Shannon, Gemma, Katie, Ruby and Caitlin from Herts and Essex High School for Girls also worked out the problem in this way correctly. Well done!
 
Iain from St. Gregory's Catholic High and Daniel from King's College, Madrid used logarithms to solve the problem:
 
If a sum increases by 10% each year this means that the value of the previous year is multiplied by 1.1 (it is 110% of what it was before). Therefore for an initial value "a" the progression will be:
Year:        0                   1                         2                                 3                             ...
                $a$             $a\times1.1$        $(a\times1.1)\times1.1$       $((a\times1.1)\times1.1)\times1.1)$
             = $a$             $a\times(1.1)$          $a\times(1.1^2)$                   $a\times(1.1^3)$                       ...
 
A sum invested gains 10% each year:
$1.1^n = 2$                                                             (1)
$n log 1.1 = log2$
$n = \frac{log2}{log1.1} = 7.273$                                        (4.s.f.)
It will therefore be 8 years before the sum is effectively doubled.

An object depreciates in value by 10% each year:
$0.9^m = 0.5$                                                         (2)
$mlog0.9 = log0.5$
$m = \frac{log0.5}{log0.9} = 6.579$                                      (4.s.f.)
It will therefore be 7 years before the sum is effectively halved.
 
Patrick from Woodbridge School went on to explain why it takes different time for the value to double and half:

Why aren't these two answers the same?
The answers are not the same as, when 10% is added to a value, less than 10% must be taken off as the 10% of the new number is larger. This can be summed up as:
If $10$%$\times x + x = y$
then $y - 10$%$\times y < x$

Is there a rate, used for both gain and depreciation, for which those two answers would actually be the same?
For the above reason, there is no such rate as this is true for all numbers and all percentages, except 0% and £0.
 
For a non-zero initial value, we cannot find a non-zero rate for which the time taken for the value to double and half would be the same. This is because for any rate, the ratio of values between two successive years will be different for gain and depreciation. To get the same time we really need these ratios to be the same.
 
Well done everyone!

You may also like

Percentage Unchanged

If the base of a rectangle is increased by 10% and the area is unchanged, by what percentage is the width decreased by ?

Circle Packing

Equal circles can be arranged so that each circle touches four or six others. What percentage of the plane is covered by circles in each packing pattern? ...

Round and Round

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo