Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Matchless

Age 14 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

This printable worksheet may be useful: Matchless.

Listen to Jenny and Graeme talking together about the problem. [ audio ]

Encounters with simultaneous equations can become over-familiar, routine experiences for students. This type of problem causes a "stop and think" moment, requires some problem-solving ingenuity, and leads into a consideration of redundancy of information. Students might make a start by substituting some arbitrary $x$, $y$ values to get a feel for the problem and to grasp that the five expressions don't generally take the same value.

This is in contrast to expressions that are identities, for example $2 (x+y) - 3(x-y )$ and $5y - x$, where the two expressions take the same value for any $x$, $y$ combination. This idea is worth some discussion.

Questions or prompts:

For a start:

$2x + 3y - 20$ equals $ 5x - 2y +38$ ...

Could you find an $x$, $y$ pair that works for two, for three, or for four of the expressions but not for all of them ?

Further ideas:

Make up a similar problem of your own.Or extending that : can you create a similar problem with an "odd one out"? That is, one expression which does not equal the other four, which are equal for some specific $x$, $y$ pair.

The following interesting account was sent in by a class teacher working withYear 8s in Maths Club at St Albans High School for Girls
Becky worked as follows:
$2x + 3y -20 = 4x + 5y -72$
($-2x$ to each side)
$3y -20 = 2x + 5y - 72$
($+72$ to each side)
$3y + 52 = 2x + 5y$
($-3y$ to each side)
$52 = 2x + 2y$
Then, $5x - 2y + 38 = x - 4y + 108$
($-x$ from each side)
$4x - 2y + 38 = -4y + 108$
($+4y$ to each side)
$4x + 2y + 38 = 108$
( $-38$ to each side)
$4x + 2y = 70$

Becky looked at the difference between these two equations and deduced
$2x = 18, so x = 9$
Then using one of her equations, and substituting $x = 9$ she found $y = 17$.

Ele and Sarah reached the same conclusion but started out by looking at
all the possible pairs of expressions. Then they selected the following two
as easiest to work with:

From $2x + 3y - 20 = 4x + 5y - 72$
They deduced $26 = x + y$

From $2x + 3y - 20 = x - 4y + 108$
They deduced $128 = x + 7y$

From these two equations they deduced $6y = 128 - 26$
$6y = 102$
$y= 17$
Then from $x + y = 26$ they found $x = 9$
All three girls were then challenged to decide how much of the information
they needed to use to solve the problem. Their conclusion was only $3$
statements were needed; they could have used $A = B$ and $A = C$ to deduce the answer where $A,B,C$ label different expressions given.

You may also like

Building Tetrahedra

Can you make a tetrahedron whose faces all have the same perimeter?

Rudolff's Problem

A group of 20 people pay a total of £20 to see an exhibition. The admission price is £3 for men, £2 for women and 50p for children. How many men, women and children are there in the group?

Polycircles

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo