Or search by topic
The solution here depends on using Pythagoras theorem in 3 dimensions (actually using the theorem for a right angled triangle on the floor and then a second time for a vertical right angled triangle). The centre of the large ball (of radius $5$ cm) is at the centre of the box and, if you think of the straight line from one corner of the box to the centre of the box, it goes through the centre of a small `packing' ball.
This solution came from Christopher, Bishop's Stortford College.
A circle has centre O and angle POR = angle QOR. Construct tangents at P and Q meeting at T. Draw a circle with diameter OT. Do P and Q lie inside, or on, or outside this circle?
What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?
Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.