Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Making Squares

Age 7 to 11
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Back in August $1998$ we had a challenge called Pebbles and this investigation could have grown out of it.

We are looking at making squares from several points. So you might like to think of these dots or points:-

S1

... as being posts that are stuck into the ground;

... as nails on a nail board;

... as holes in a piece of cardboard;

... as squares marked on paper etc.


Whichever way you care to think about them, we are going to make some squares.
The squares are made by first drawing just one side, always starting that one side from the bottom left-hand square as shown below:

S2
So we might start with this one:-

S3

 

... and draw the rest of the square in by making sure that the sides are at right angles and of the same length - things that you know about squares!

That would give us:


S4
This would be the smallest square that we can make from drawing a line from the bottom left-hand corner to one of the other dots.

We can of course draw other starting lines, such as:


S5
and another such as:
S6
These would lead to squares that would be:

S7 S8

I wonder what size these squares are compared with the first smallest square?

Your challenge is to make more and more squares by using your starting side (roughly in the lower left-hand part) to other points marked in the $5$ by $5$ arrangement.

The investigation is about ways of finding out the areas of all these squares. You do not need any special knowledge but you may need lots of squared paper and a pair of scissors. You may be wanting to use a piece of cut-out card. I guess you'll need a chance to discuss this with friends.

When you've got all your areas sorted out you could continue this investigation by looking at the answers you've got and seeing if there are any special things about them ... I expect there are ... there usually are in these sorts of challenges.

You may also like

Tangrams

Can you make five differently sized squares from the interactive tangram pieces?

Geoboards

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Polydron

This activity investigates how you might make squares and pentominoes from Polydron.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo