Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

More Bridge Building

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Although this problem is quite open ended, the key objective is for students to engage with the distribution of tensions and compressions in a structure as a geometric whole, rather than focussing on the algebra of a typical calculation. Students should learn the power of vector methods to understand the mathematical structure of a problem. Once they develop a feel for the ideas they should be able to create general statements about structures without the need for calculation from the onset. This interplay between geometrical and algebraic arguments is a very important skill for students to begin to develop.

The ideas covered in this problem extend to more challenging investigations of real world structures. Great examples are Forth Bridge in Scotland, the Eiffel Tower and geodesic domes. These can be used to stimulate discussion about the forces in real bridges and structures.

Questions that you may like to pose are: What structural similarities do real world structures have? Why do you think that they share these similarities? Why do you think that the designers chose these structures? How does changing the structure change the location of the greatest tensions and compressions? How do you think the forces are distributed amongst all of these objects? Will there be any net forces at the joints?

You may also like

Lunar Leaper

Gravity on the Moon is about 1/6th that on the Earth. A pole-vaulter 2 metres tall can clear a 5 metres pole on the Earth. How high a pole could he clear on the Moon?

Wobbler

A cone is glued to a hemisphere. When you place it on a table in what position does it come to rest?

Bridge Builder

In this short problem we investigate the tensions and compressions in a framework made from springs and ropes.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo