Or search by topic
Patrick from Woodbridge school used a computer to check his answer:
"I used the Mac OS X application "Grapher" to help with this. I used it to plot the lines to check my answers. I did the intersections part by solving every equation against every other in a simultaneous equation, I got the answer of $6$ (I did each algebraically but it would take a lot of space to write up)"
You can view the four graphs using the Desmos graphing calculator here
Labelling the equations $1$ to $4$ in the obvious way, here are Patrick's co-ordinates of the six intersections:
$1$ and $2$: $(9,4)$
$1$ and $3$: $(1,7)$
$1$ and $4$: $(-47,25)$
$2$ and $3$: $(-1,-1)$
$2$ and $4$: $(-5,-3)$
$3$ and $4$: $(-2,-5)$
We can deduce that lines $2, 3$ and $4$ form the triangle.
Note that if we rearrange the equations into the standard form $y = mx + c$, it would be possible to sketch the four lines and estimate roughly where their intersections lie. It might then be sufficient to solve the problem without needing to explicitly calculate any co-ordinates.
A group of 20 people pay a total of £20 to see an exhibition. The admission price is £3 for men, £2 for women and 50p for children. How many men, women and children are there in the group?
Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?