Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Taking Trigonometry Series-ly

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

Part 1: Numerical

A mathematician friend mentioned to me that for small values of $x$ we might closely approximate $\sin(x)$ and $\cos(x)$ by cubic polynomials. Was she correct? To answer this question, use your calculator in degree mode to try to find the coefficients $a, \dots, h$ in the following suggested polynomial approximations: \[\sin(x) = a +bx+cx^2+dx^3\quad\quad \cos(x) = e+fx+gx^2+hx^3\quad\quad -0.1\leq x\leq 0.1\] Do you find that there is a best answer to finding these coefficients? How do the coefficients change when you try out the problem in radian mode on the calculator? Can you find a good choice of the coefficients of a possible fourth order term? Don't forget that you already possibly know certain values of the trig functions which might give you a good starting point for a search for these functions.

Part 2: Using calculus

My mathematician friend now tells me that she thinks of trigonometrical functions in terms of solutions to differential equations, and not in terms of triangles. She says that $\sin(x)$ and $\cos(x)$ are both solutions to the second order differential equation: \[\frac{d^2 f}{dx^2}+f =0\;.\] Using this approach, what values for the coefficients $a, \dots, g$ emerge for the polynomial approximations from the first part? Does this correspond to your degree or radians expression? Or something different?

If the polynomial approximation continued to an arbitrarily high order, what would the coefficients be?

If you find the approximation to the sixth power of $x$ you can now estimate trigonometrical values without using the $\sin$ or $\cos$ button on your calculator. Test the accuracy of your series for various values of $x$ between $0$ and $\pi$/2.

Discussion points: Do you think that your calculator stores values of sin and cos, or works them out on demand? Would your series provide an efficient way of evaluating the numerical values of sin(x) and cos(x)?

You may also like

Degree Ceremony

Can you find the sum of the squared sine values?

Making Waves

Which is larger cos(sin x) or sin(cos x) ? Does this depend on x ?

Small Steps

Two problems about infinite processes where smaller and smaller steps are taken and you have to discover what happens in the limit.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo