Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Triangle Relations

Age 7 to 11
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Inceeya from Glenarm College told us:

My solution is that the side of the isoceles triangle is the same length as the base of the equilateral triangle.

Well noticed, Inceeya. Yes, we could say that the sides of the equilateral triangle (which of course are all the same) are the same length as the shorter sides of the isosceles triangle.

Rhea from Mason Middle School compared the triangles very thoroughly. Here are some of the things she noticed:



1. They both have three sides/three angles.
2. Both have at least two acute angles.
3. All of their interior angles add up to 180 degrees.
4. These specific triangles have no 90 degree angles.
5. They are both 2D figures.
6. These two share the same area.

Some of these things would apply to any triangles - you might like to think about which ones - and some apply just to these two triangles. Rhea told us that she cut out both the triangles and put them next to each other to make her list. I am particularly impressed that Rhea suggests they have the same area. She explained how she worked this out:


I cut the equilateral triangle in half and saw if it would fit in the isosceles triangle. To my revelation it did. This is how I established that these two triangles have an equivalent area.

Excellent - thank you to Rhea and Inceeya.


You may also like

Geoboards

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Tiles on a Patio

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Pebbles

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo