Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cannon Balls

Age 16 to 18
ShortChallenge Level Yellow star
  • Problem
  • Getting Started
  • Solutions
  • Teachers' Resources

We recieved solutions from Vladimir Radmanikov from South Island School, Samuel from Manor Park Community college and Laura from Millhaven school, who said the following:

If we take upwards as positive $x$ then this is motion under a constant downwards acceleration $a=-9.8$. We need to use the formula
$$
x(t) = v(0)t+\frac{1}{2}at^2= v(0)t-4.9t^2\;.
$$
We want to know the starting speed $v(0)$ to make it hit the ground $x=0$ in $1\mathrm{s}$.
So, we must solve
$$
0 = v(0)\times 1 -4.9\times 1^2\;.
$$
So, the ball must be shot up at $4.9\mathrm{ms}^{-1}.$


For other times we have
$$
v(t) = 4.9t\;.
$$
So, double the time requires double the speed and so on. So, $10\mathrm{s}$ travel time requires $49\mathrm{ms}^{-1}$ etc., as in this table



Travel time $10\mathrm{s}$ $100\mathrm{s}$ $1000\mathrm{s}$ $100,000\mathrm{s}$
Speed $49\mathrm{ms}^{-1}$ $490\mathrm{ms}^{-1}$ $4.9\mathrm{kms}^{-1}$ $490\mathrm{kms}^{-1}$

Clearly the last one will go straight into space!

You used various method to find the higest point of the cannon ball, which occurred half way through the journey.

Samuel said

We need to work out when the ball stops moving to find the highest point each time. Differentiating the first equation gives us
$$
v(t) = v(0) -9.8 t\;.
$$
If $T$ is the time of maximum height then setting $v(T)=0$ gives $T = v(0)/9.8= t/2$. So it reaches the maximum height half way through the travel time in each case. Putting $t=5,50,500,500000$ into the first equation gives

Travel time $10\mathrm{s}$ $100\mathrm{s}$ $1000\mathrm{s}$ $100,000\mathrm{s}$
Maximum height $122.5\mathrm{m}$ $12.25\mathrm{km}$ $1225\mathrm{km}$ $12250000\mathrm{km}$


Laura noted

By conservation of energy the cannon ball must hit the ground with the same speed as it left the ground, so the up and down parts of the journey are mirror images. So the maximum height is reached exactly half way through the journey. So, at times $5\mathrm{s}$, $50\mathrm{s}$, $500\mathrm{s}$, $50000\mathrm{s}$.

Vladimir made use of another form of the kinematic equations

To find the maximum height I can use this formula
$$v(t)^2 = v(0)^2 + 2ax(t)\;.$$
At the highest point $v(t)=0$, so
$$
x_{max} =\frac{v(0)^2}{2\times 9.8}\;.
$$

This method also gives the values in the previous table.

Vladimir though that, since the earths radius is $6000\mathrm{km}$ the cannon ball taking $1000\mathrm{s}$ was likely to return to earth, as this has a maximum height of $1225\mathrm{km}$, and was therefore still in range of gravity (even taking the decay of gravity into account). Laura noted that the escape velocity from earth is around $11\textrm{ km per second}$, so all but the final cannon ball would return to earth.

Well done to you all!




You may also like

Lunar Leaper

Gravity on the Moon is about 1/6th that on the Earth. A pole-vaulter 2 metres tall can clear a 5 metres pole on the Earth. How high a pole could he clear on the Moon?

Which Twin Is Older?

A simplified account of special relativity and the twins paradox.

Whoosh

A ball whooshes down a slide and hits another ball which flies off the slide horizontally as a projectile. How far does it go?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo