Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Jumping Gerbils

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem:

This is certainly an exercise in 'visualisation' or rather an exercise in working through various visualisations until one is reached that does what is needed.

There are a number of ways to approach this problem but seeing it as a line being consumed from both ends simultaneously is a particularly helpful one.

Students may have to work quite hard just to find a first visualisation and then continue their effort until they find a visualisation that lets them 'see' how the problem may be solved.

Rates are a fundamental idea in mathematics and this problem offers a challenging context in which to encounter and consider these kinds of measure.

Possible approach :

For students who need a 'concrete' phase follow the idea in the 'Possible support' section below. For more able students the questions below should provide enough of a prompt and plenty of time should be allowed in which they can work towards a first visualisation and its subsequent improvements. Using the prompt questions in the 'Possible support' section too early will rob students of the important opportunity to arrive at their own visualisation.

For the very ablest students this problem provides a valuable context in which they may gain confidence and 'feel' for this type of problem.

Key questions :

  • What are we asked to find ?

  • What else might it be helpful to know so we can do that ?

  • Is there a way we might discover that ?

Possible extension :

Encourage abler students to see the connection between this context and the Swimmers problem.

Possible support :

Set up a line of 'tins' (plastic cubes maybe, the number doesn't matter but 20 maybe)
Have one student consuming as the gerbil and another student consuming as a labelling machine from the other end.
Ask students what information is needed so that the gerbil and the machine can eat their way along the line a second's worth at a time.

This should establish a visualisation and the next step is probably trial and improvement, adjusting the machine's rate and the number of 'tins' until the students can engage with the values given in the problem.
  • How long did each run last ?
  • How many more tins did the gerbil manage when it ran faster ?
  • How much less consuming did the machine manage on the gerbil's second run ?



You may also like

On the Road

Four vehicles travelled on a road. What can you deduce from the times that they met?

There and Back

Brian swims at twice the speed that a river is flowing, downstream from one moored boat to another and back again, taking 12 minutes altogether. How long would it have taken him in still water?

Escalator

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. ... How many steps are there on the escalator?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo