Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Factorial

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions

The problem here is to find the number of zeros at the end of the number which is the product of the first hundred positive integers. We call this `100 factorial' and write it 100!

For example 4! = 1x2x3x4 = 24 and 5! = 1x2x3x4x5 = 120.

Well done Xinxin of Tao Nan School, Singapore who sent in the solution below in record time and also the Key Stage 3 Maths Club at Strabane Grammar School, N. Ireland and James of Hethersett High School, Norfolk.

The Strabane group said ``We started with a 10 x 10 number square and worked out 2!, 3!, 4! ... etc. We quickly realised that the number of zeros at the end of 100! depends on the number of tens appearing within the product which in turn depends on the number of twos and fives'' and Xinxin's solution is re-produced in full below.

This question basically asks about the number of zeros ending the number `100!'.

Since 2x5 equals 10, the key to answering this question is finding out the number of matches of 2 and 5 occurring in the prime factors of 100!.

Since it is obvious that when 100! is factorised, there are more 2's than 5's. As a result, all the 5's will find matches. Counting the number of 5's gives the number of matches.

First, all the multiples of 5:
5=1x5
10=2x5
15=3x5
20=4x5
...

There are a total of 20 multiples of 5. As a result, we have already found 20 matches, and thus 20 zeros.

However, it is noted that four numbers contribute two 5's to the factors of 100!. They are:

25=5x5
50=2x5x5
75=3x5x5
100=2x2x5x5

As a result, there are, in fact, 24 5's in the factors of 100!.

Thus, 100! ends with 24 zeros.

Done on the 4 th of November 1998 by:
Xinxin
Tao Nan School
Singapore.


You may also like

N000ughty Thoughts

How many noughts are at the end of these giant numbers?

Squaresearch

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Fac-finding

Lyndon chose this as one of his favourite problems. It is accessible but needs some careful analysis of what is included and what is not. A systematic approach is really helpful.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo