Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Catalyse That!

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
  • Warm-up
  • Think higher
  • Read: mathematics
  • Read: science
  • Explore further
 

 

The rate of an enzyme-catalysed reaction depends on the temperature of its solution. The reaction activates at $20^\circ C$, at a rate of zero mol/l/min, and deactivates at $80^\circ C$. For each degree increase in temperature between $20^\circ C$ and $60^\circ C$ the rate of reaction increases by 0.1 mol/l/min and for each degree increment between $60^\circ C$ and $80^\circ C$ the rate reduces by 0.2 mol/l/min.

 

    10 litres of the solution is prepared at a temperature of $20^\circ C$ and then placed immediately into an oven. Assume that the oven heats the solution at a fixed rate of $R^\circ C$ per minute. Consider these questions
    1. What rate of heating would give rise to exactly 100 mol being catalysed?
    2. For heating at a rate of 1 degree per minute, after how long will exactly 100 mol been catalysed?
    3. (Hard numerical extension) What rate of heating would lead to exactly 100 mol being catalysed in the shortest time?
      Consider an alternative problem: if the solution is prepared at boiling point: at what rate must 1 litre be cooled to end up with exactly 3 mol having been catalysed?

       

      Hard extension: In reality, the temperature of the oven would probably be fixed and the rate of increase in temperature of the solution would be proportional to the difference in temperature between the oven and the solution. How far are you able to analyse this situation (note: you need to use differential equations)?

       

       

       

       

       

       

      Notes and background

      Whilst the chemistry of certain processes might seem reasonably straightforward, to implement reactions on an industrial scale requires very precise levels of timing, heating and so on. Since a human is unable carefully to watch a reaction progress in many cases, checking mechanisms must be automated. Scaling up reactions to large volumes can introduce many engineering complications not seen in the laboratory.

      Furthermore, many chemical and biological reactions will naturally activate once certain temperatures are reached. Measuring a specific quantity of reactants in these cases might be tricky, and the amount taken out of the freezer, for example, might need to be smaller than the amount required for an experiment so as to take into account this (inevitable) continuous growth.

      More realistically, heating does not typically occur at a fixed rate. Newton's Law of Cooling tells us that the rate of change in temperature is proportional to the difference in the temperature between the body and the heat source.

       

       

       

      You may also like

      A Method of Defining Coefficients in the Equations of Chemical Reactions

      A simple method of defining the coefficients in the equations of chemical reactions with the help of a system of linear algebraic equations.

      Mathematical Issues for Chemists

      A brief outline of the mathematical issues faced by chemistry students.

      Reaction Rates

      Explore the possibilities for reaction rates versus concentrations with this non-linear differential equation

      • Tech help
      • Accessibility Statement
      • Sign up to our newsletter
      • Twitter X logo

      The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

      NRICH is part of the family of activities in the Millennium Mathematics Project.

      University of Cambridge logo NRICH logo