Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Efficient Packing

Age 14 to 16
Challenge Level Yellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

First we need to find how many discs we can stack $1 \ \mathrm{m}$ in the $y$-direction, the centres of all the discs lie on a line at 60 degrees to the horizontal.
The total number stacked vertically $= \frac{1}{d\sin 60^\circ}$ (where $d$ is the diameter of a disc measured in m)

Case 1: $d = 10 \ \mathrm{cm} =0.1 \ \mathrm{m}$

$\textrm{Number of discs stacked vertically} = 11 $
$\textrm{Total number of discs} = (6 \times 10) + (5 \times 9) = 105 $
$\textrm{Packing fraction} = \frac{\textrm{No. Discs} \times \pi r^2}{1} = 0.825 $

Case 2: d=1cm = 0.01m

Number of discs stacked vertically = 115
Total number of discs = (58x100) + (57x99)= 11443
Packing fraction =$\frac{No. Discs x \pi r^2}{1}$= 0.899

Case 3: d = 1mm =0.001m

Number of discs stacked vertically = 1154
Total number of discs = (577x1000) + (577x999)= 1153423
Packing fraction =$\frac{No. Discs x \pi r^2}{1}$= 0.906

Extension

The most efficent method of packing spheres is face centred cubic packing, FCC packing will provide us with an upper limit to the number of spheres we can pack.

In the Face Centered Cubic (FCC) unit cell there is one host sphere at each corner and one host sphere in each face. Since each corner sphere contributes one eighth of its volume to the cell interior, and each face sphere contributes one half of its volume to the cell interior (and there are six faces), then there are a total of $\frac{1}{8}x8 + \frac{1}{2} x 6 = 4$ spheres in the unit cell.



If we define
a = length of one side of the unit cell
r = radius of one sphere

we can see that 4rsin(45) = a.

The volume fraction of such a unit cell is the number of spheres in the cell multiplied by the volume of a sphere and then divided by volume of cube.

Volume fraction = $\frac{4x \frac{4}{3}\pi r^3}{(2\sqrt(2)r)^3}$ = 0.74

The number of spheres in a volume of $1m^3$ is therefore:

$\frac{0.74}{\frac{4}{3}\pi (0.005)^3}= 1413295$

This is the upper limit to the number of spheres we may pack. It is likely we will not actually be able to pack quite so many. If we did adopt this method we would have fractions of spheres along the sides of the container, as shown in the unit cell above.

You may also like

Some(?) of the Parts

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

Polycircles

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Circumspection

M is any point on the line AB. Squares of side length AM and MB are constructed and their circumcircles intersect at P (and M). Prove that the lines AD and BE produced pass through P.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo