Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Escalator

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions

Will of The Ridgeway School; Xing Cong of Raffles Institution, Singapore; Elizabeth of Ipswich High School; and Alexandra of Bancroft's School, Woodford Green, Essex; all used very similar methods. This is Alexandra's beautifully clear solution:

There are 100 steps. When the taller man reaches the top the shorter man will have climbed one third of 75 steps i.e. 25 steps. This means that the shorter man is half way up the escalator when the taller man has reached the top. At this moment, there are 50 steps between the men (the difference between 75 and 25) which means that half the escalator is equal to 50 steps. The whole escalator is therefore double this, that is 100 steps.

Although it takes longer and more work, this problem can be solved by supposing there are k steps on the escalator, that the speed of the escalator is v steps per minute and the speeds of the two men are u and 3u steps per minute. Now you need four equations to find k. You can write down these four equations from the distance, speed and time for the smaller man relative to the ground, for the smaller man relative to the escalator, for the taller man relative to the ground and for the taller man relative to the escalator.


You may also like

Fixing the Odds

You have two bags, four red balls and four white balls. You must put all the balls in the bags although you are allowed to have one bag empty. How should you distribute the balls between the two bags so as to make the probability of choosing a red ball as small as possible and what will the probability be in that case?

Scratch Cards

To win on a scratch card you have to uncover three numbers that add up to more than fifteen. What is the probability of winning a prize?

Concrete Calculation

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to make the concrete raft for the foundations?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo