Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Two and Two Poster

Age 7 to 14
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions

There are seven possible answers:
938+938=1876
928+928=1856
867+867=1734
846+846=1692
836+836=1672
765+765=1530
734+734=1468

 

Why?

F has to be 1 because TWO is less than 1000, so TWO + TWO is less than 2000. This also means that T ≥ 5. Note R must be even.

O appears twice, look at the value of O.
If O = 0, then R would also be 0 so that doesn't work and O can't be 1 because F = 1.

If O = 2,
$\quad \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{2}$
$\underline{+\, \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{2}}$
$\underline{\, \, \, \text{1}\hspace{1mm} \text{2}\hspace{1mm} \text{U}\hspace{1mm} \text{R}}$
then R = 4 and T = 6 and we also know that W < 5 because there can't be anything carried to the hundreds column. The only possible value of W that hasn't already been used is 3 but this would mean that U is 6 which is the same as T.


If O = 3,
$\quad \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{3}$
$\underline{+\, \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{3}}$
$\underline{\, \, \, \text{1}\hspace{1mm} \text{3}\hspace{1mm} \text{U}\hspace{1mm} \text{R}}$
$\quad \, \, ^1$
then R = 6 and T = 6 which doesn't work.


If O = 4,
$\quad \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{4}$
$\underline{+\, \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{4}}$
$\underline{\, \, \, \text{1}\hspace{1mm} \text{4}\hspace{1mm} \text{U}\hspace{1mm} \text{R}}$
then R = 8 and T = 7 and we also know that W < 5 because there can't be anything carried to the hundreds column. So W could be 0, 2 or 3.
W can't be 0 because then U would be 0 and it can't be 2 because U would be 4.
If W = 3, U = 6 which works: 734 + 734 = 1468.


If O = 5,
$\quad \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{5}$
$\underline{+\, \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{5}}$
$\underline{\, \, \, \text{1}\hspace{1mm} \text{5}\hspace{1mm} \text{U}\hspace{1mm} \text{R}}$
$\quad \, \, ^1 \, \: ^1$
then R = 0 and T = 7 and we also know that W ≥ 5 because there has to be 1 carried to the hundreds column.
W can't be 5 because O = 5.
If W = 6, U = 3 which works:  765 + 765 = 1530.
If W = 7, U = 5 which doesn't work because O and U are the same.
If W = 8, U = 7 which doesn't work because  T and U are the same.
If W = 9, U = 9 which doesn't work because W and U are the same.


If O = 6,
$\quad \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{6}$
$\underline{+\, \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{6}}$
$\underline{\, \, \, \text{1}\hspace{1mm} \text{6}\hspace{1mm} \text{U}\hspace{1mm} \text{R}}$
$\quad \, \, ^1$
then R = 2 and T = 8 and we also know that W < 5 because there can't be anything carried to the hundreds column. So W could be 0, 3 or 4.
If W = 0, U = 1 which doesn't work because F and U are the same.
If W = 3, U = 7 which works. 836 + 836 = 1672
If W = 4, U = 9 which works. 846 + 846 = 1692


If O = 7,
$\quad \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{7}$
$\underline{+\, \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{7}}$
$\underline{\, \, \, \text{1}\hspace{1mm} \text{7}\hspace{1mm} \text{U}\hspace{1mm} \text{R}}$
$\quad \, \, ^1 \, \: ^1$
then R = 4 and T = 8 and we also know that W ≥ 5 because there has to be 1 carried to the hundreds column.
If W = 5, U = 1 which doesn't work because F and U are the same.
If W = 6, U = 3 which works.  867 + 867 = 1734
W can't be 7 because O = 7.
If W = 8 , U = 7 which doesn't work because  O and U are the same.
If W = 9, U = 9 which doesn't work because W and U are the same.


If O = 8,
$\quad \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{8}$
$\underline{+\, \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{8}}$
$\underline{\, \, \, \text{1}\hspace{1mm} \text{8}\hspace{1mm} \text{U}\hspace{1mm} \text{R}}$
$\quad \, \, ^1$
then R = 6 and T = 9 and we also know that W < 5 because there can't be anything carried to the hundreds column. So W could be 0, 2, 3 or 4.
If W = 0, U = 1 which doesn't work because F and U are the same.
If W = 2, U = 5 which works: 928 + 928 = 1856.
If W = 3, U = 7 which works: 938 + 938 = 1876.
If W = 4, U = 9 which doesn't work because T and U are the same.


If O = 9,
$\quad \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{9}$
$\underline{+\, \text{T}\hspace{1mm} \text{W}\hspace{1mm} \text{9}}$
$\underline{\, \, \, \text{1}\hspace{1mm} \text{9}\hspace{1mm} \text{U}\hspace{1mm} \text{R}}$
$\quad \, \, ^1 \, \: ^1$
then R = 8 and T = 9 which doesn't work because O and T are the same.

 

Related Collections

  • More Posters
  • Primary Posters
  • Secondary Posters

You may also like

Arithmagons Poster

Arithmagons Poster

Decimal Time Poster

Poster based on Decimal Time task.

Online Poster

Poster based on Online task.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo