Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Contrary Logic

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


This problem is in two parts. The first uses logic in the context of English language whereas the second uses logic in the clearer context of mathematics


Part 1. Which of the following are certainly true, which are certainly false. How many statements form equivalent pairs? Are there any parts of the problem which are debatable or unclear?

If my team wins the world cup tomorrow then I'll be happy tomorrow.
If I am happy tomorrow then my team will win the world cup tomorrow.
If I am not happy tomorrow then my team will not win the world cup tomorrow.
If my team does not win the world cup tomorrow then I will not be happy tomorrow.

If this is maize then it grew from a seed
If this grew from a seed then it is maize
If this did not grow from a seed then it is not maize
If this is not maize then it did not grow from a seed

If Rover is a dog then Rover is an animal
If Rover is not an animal then Rover is not a dog
If Rover is not a dog then Rover is an animal
If Rover is an animal then Rover is a dog

These ideas will help you to understand part 2.


Part 2. In mathematical logic the implication arrows $\Rightarrow$ and $\Leftrightarrow$ are used to connect expressions as follows:

$p\Rightarrow q$ means 'IF $p$ is true THEN $q$ is true.

$p\Leftrightarrow q$ means both $p\Rightarrow q$ AND $q \Rightarrow p$ simultaneously.


Convince yourself that
$$
\left(p\Rightarrow q\right) \Leftrightarrow \left((NOT q) \Rightarrow (NOT p)\right)
$$

The expression on the right is called the contrapositive of the statement on the left. Since they are linked by $\Leftrightarrow$, proving one side will automatically prove the other.

Consider these statements involving positive integers $n$ and $m$.

1: $n+m$ is odd $\Rightarrow n\neq m$.

2: $n+m$ is even $\Rightarrow$ $n$ and $m$ are either both even or both odd

3: $n^2$ is even $\Rightarrow n$ is even.

4: $n^3$ is odd $\Rightarrow n$ is odd.

5: $n$ mod (4) = 2 or 3 $\Rightarrow$ $n$ is not a perfect square.

Write out the contrapositive versions of these statements and use these to prove the statements. You can assume that an even number can be written as $2N$ and an odd number as $2M+1$.


You may also like

Geometry and Gravity 2

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

To Prove or Not to Prove

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

An Introduction to Number Theory

An introduction to some beautiful results in Number Theory.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo