Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

For Richer for Poorer

Age 14 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem may support a deeper understanding of averages. The unexpected result may lead students to ask what else might be possible. Encouraging students to ask questions and organise their work in a systematic way in order to draw conclusions are all key mathematical skills that can be encouraged.

Possible approach

This problem featured in an NRICH webinar in December 2020.

Before introducing the problem, revisit finding the mean through this simpler question:

Draw up the following table on the board:

Anna Brin Cayley Dave Erin
2 8 10 14 16


The table shows the ages of five children. What is the average (mean) age?
If Anna leaves the group, what happens to the average?
If Cayley leaves the group instead, what happens to the average?
If Erin leaves the group instead, what happens to the average?

Ensure that students notice that the average can stay the same, go up or go down depending on whether the age of the child leaving is the same as, less than or greater than the average.This is the focus of the main problem.

Introduce the main problem.The first part should now be straightforward, so students can devote their thinking to the follow up question:
What other effects can moves between countries have on average incomes?

This question may need fleshing out -

What are the possibilities?
What are the variables that can be altered?
 
Students (perhaps working in pairs) could be asked to present their findings. This may offer an opportunity to reflect on the value of approaching the work in a systematic way.

 

Key Questions

What could cause the mean to increase?
What could cause the mean to decrease?

Possible support

You may choose to offer the following specific example.
Group 1: ages 2, 7, 11, 14 and 16 (average 10)
Group 2: ages 5, 11, 12, 13 and 19 (average 12).

Investigate what happens to the averages when different members move from one group to the other.
 

Possible extension

Is it possible to double one country's average income whilst halving the other?

Interested students may also wish to consider whether there are contexts where this statistical manipulation may be used to advantage.

 

You may also like

Mediant Madness

Kyle and his teacher disagree about his test score - who is right?

Marathon Mission

Minnie trained more for the London Marathon this year, so her speed increased. By what percentage did her time decrease?

Tyneside Average Speed

Can you work out the average speed of the van?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo