Or search by topic
This problem offers practice in working with indices to develop fluency, while providing an intriguing context to discover patterns and find justifications.
This printable worksheet may be useful: Power Mad
"Work out and write down the powers of $2$ from $2^1$ up to $2^8$." Give students a short time to do this, perhaps using mini-whiteboards.
"What do you think would be the last digit of $2^{100}$?" Give students time to discuss this with their partner before sharing ideas and justifications.
"Are there any powers of two that are multiples of $10$?" "No, because a power of 2 has to end in a 2, 4, 6 or 8, and a multiple of 10 ends in a 0".
For the next part of the lesson, you could divide the class into pairs or small groups, and give each group one of the following to work on:
When students have finished working on their question and justified their findings, invite them to look for similar results of their own. Here are a few suggestions that they could explore for different values of $n$:
To finish off, students could present their findings to the rest of the class, with emphasis on clear explanations to justify that the patterns they have found will continue for all values of $n$.
What patterns can you find in the units digit of ascending powers of 2, 3, 4...?
You might suggest that students draw up 'power tables' so that the cyclical nature of the units digits becomes apparent.
This is an open ended activity which already offers plenty of opportunities for extension work.
The Stage 5 problem Tens takes the ideas in this problem and treats them in a more formal way, encouraging the use of Modular Arithmetic notation.
Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!
Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.