Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

What's Your Mean?

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem gives an opportunity to practise numerical integration in the context of probability distributions. It will really allow students to get into the meaning of probability density functions in terms of areas and probabilities. Instead of simply requiring an explicit calculation, students will need to engage with decisions concerning limits and integration.

Possible approach

The first stage of the problem is to realize that a numerical integration is needed to calculate the mean. Once the class has realised that this is the case, they will need to start to perform the integrations. This will require various choices as there are many ways in which this can be done. To facilitate this, you might like to print off copies of the graph for students to draw on.

Key questions

How do we relate a probability density function to a probability?
How do the two graphs relate to each other?
What is the graphical interpretation of an integral?
How important will the effect of the second graph be?
What happens for values larger than $20$? Are these values relevant?

Possible extension

How might you try to estimate the variance for these distributions numerically?

Possible support

First try to show that numerically the area under the red curve is 1. You can then use the decomposition into rectangles and trapezia to try to work out the mean.


  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo