Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

One and Three

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Two motorboats are travelling up and down a lake at constant speeds and turning at each end without slowing down. They leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A and, for the second time, 400 metres from B. How long is the lake (the distance from A to B) and what is the ratio of the speeds of the boats?

We give the solution by Nisha Doshi , Year 9, The Mount School, York. Well done Nisha this is a really good solution.



Call the boats $A\prime$ and $B\prime$. The first time they meet, the distances gone are: 600 metres by $A\prime$ and $(x + 400)$ metres by $B\prime$.

The second time the distances are: $(x + 400 + 400)$ metres by $A\prime$ and $(600 + 600 + x)$ metres by $B\prime$.

Since the two speeds are constant, the ratios of the distances travelled each time must be constant, so $$ \frac{600}{x+400} = \frac{x+800}{x+1200} $$ which leads to
\begin{eqnarray} 600(x + 1200) &=& (x + 400)(x + 800) \\ 600x + 720000 &=& x^2 + 1200x + 320000 \\ x^2 + 600x - 400000 &=& 0 \\ (x - 400)(x + 1000) &=& 0 \\ \end{eqnarray}
It follows that $x = 400$ metres and that the length of the lake is $600 + 400 + 400 = 1400$ metres.

The ratio of the speeds must be 600 : 800 or 3 : 4.

FOOTNOTE: You can also use the fact that at the first meeting the combined distance travelled is one length of the lake and at the second it is 3 lengths. It follows that if $A\prime$ travels 600 metres by the first meeting it will have travelled three times that distance by the second meeting, that is 1800 metres. This gives $x = 1800 - 600 - 400 - 400 = 400$ and hence the length of the lake is 1400 metres.

You may also like

Golden Thoughts

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

At a Glance

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

Contact

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo