Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Global Warming

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

According to wikipedia, the atmosphere has a mass of $5\times10^{18}kg$, and the specific heat capacity of air is about $1\mathrm{Jg^{-1}K^{-1}}$. Therefore, the amount of energy needed to raise the average temperature of the atmosphere by $0.4^{\circ}\mathrm{C}$ is
$$1\times10^3\mathrm{Jkg^{-1}K^{-1}}\times0.4\mathrm{K}\times5\times10^{18}\mathrm{kg} = 2\times10^{21}\mathrm{J}.$$

 

Coal has an energy density of 24 megajoules per kilogram. Assuming 100% of the energy released from burning heats the atmosphere, we'll need $\frac{2\times10^{21}\mathrm{J}}{ 24\times10^6\mathrm{Jkg^{-1}}} = 8\times10^{13}\mathrm{kg}$. Assuming a global population of 6 billion this corresponds to $\frac{8\times10^{13}}{6\times10^9\times30\times52} = 9$ kilograms per person per week per year for the last 30 years. 

 

This is probably a significant underestimate of the amount of fuel used, as not all the energy released from burning goes straight to the atmosphere. Also, this calculation ignores the fact that different fuels have different energy densities. 

The greenhouse effect is also responsible for some of the temperature increase. 

You may also like

Far Horizon

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Investigating the Dilution Series

Which dilutions can you make using only 10ml pipettes?

chemNRICH

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study of chemistry at A-level and university.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo