If we suppose that the curve $y=f(x)$ is integrable then the volume created will be
$$
V = \int^1_0 \pi y^2 dx\;.
$$
To get a feel for the sort of curve we might need, first consider the special case $y=x$, which clearly passes through the two points. Then,
$$
V = \int^1_0 \pi x^2 = \pi\left[\frac{x^3}{3}\right]^1_0 = \frac{\pi}{3}\;.
$$
This is slightly larger than $1$, so we could consider a family of curves which are beneath $y=x$.
We could look for a curve like the blue one in the diagram below:
This looks like a section of a polynomial which has a root at $0$.