Or search by topic
This problem provides an opportunity for rich discussion of properties of quadrilaterals and circles, and leads to geometrical reasoning in searching for proofs and counter-examples.
This printable worksheet may be useful: Circles in Quadrilaterals.
Show the three examples of tangential quadrilaterals and allow the learners to identify what they have in common. Share the definition of a tangential quadrilateral as one where a circle can be constructed inside to just touch all four sides.
Create lots of diagrams to build up ideas of what is and isn't possible. There is a diagram in the Hint showing a semicircle constructed in a triangle; considering this may help for those quadrilaterals which can be cut along a line of symmetry into two triangles.
If the side lengths of a tangential quadrilateral are $a$, $b$, $c$ and $d$, with $a$ opposite $c$ and $b$ opposite $d$, show that $a+b = c+d$.
Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.
A kite shaped lawn consists of an equilateral triangle ABC of side 130 feet and an isosceles triangle BCD in which BD and CD are of length 169 feet. A gardener has a motor mower which cuts strips of grass exactly one foot wide and wishes to cut the entire lawn in parallel strips. What is the minimum number of strips the gardener must mow?
What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?