Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Striking Gold

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

  • Warm-up
  • Try this next
  • Think higher
  • Read: mathematics
  • Read: science
  • Explore further
 

This problem involves a retrospective look at Geiger and Marsden's famous experiment concerning the deflection of alpha particles passing through gold film. In this problem, assume that alpha particles and gold nuclei are modelled by hard spheres and that the alpha particles deflect if and only if they strike a gold nucleus. Note that the problem is about making good order of magnitude approximations, rather than performing a numerical calculation with a specific 'correct' answer.

[For this problem note that $1$ femtometre, $1\textrm{ fm}$, $= 1000$ picometres = $1\times 10^{-15}\textrm{ m}$, gold assumes a face-centred cubic crystal structure, and that the radius of a gold atom is $135\textrm{ pm}$.]


Scattering experiments have been used to determine that the radius $r_A$ of a nucleus of an atom of atomic number $A$ can be approximated by
$$r_A = 1.2\times A^{\frac{1}{3}} \textrm{ fm}\;.$$
Think about why this expression might make sense. What does it say about the radius of an alpha particle? What about the radius of the nucleus of a gold atom?

If you shoot an alpha particle into a block of gold, what is the chance of it being deflected by the first gold atom it enters?

Geiger and Marsden fired high energy alpha particles at a thin sheet of gold and noted that around $1$ in $8000$ incident alpha particles were deflected to some degree.

How thick do you think that their sheet of gold was?




NOTES AND BACKGROUND

Towards the end of the 19th century scientists were beginning to understand that atoms of matter contained both positively and negatively charged components. It was suggested by J. J. Thompson in 1898 that atoms could be described as spheres of positive electricity in which small negatively charged electrons were embedded -- like a currant bun or 'plum pudding', as it was described at the time. In 1909 Geiger and Marsden tested this prediction by firing alpha particles at gold foil. As expected, most of the particles passed directly through the gold foil. However, they were very surprised to find that a small fraction of these particles were dramatically deflected -- Lord Rutherford described this as 'about as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you!'. The subsequent realisation that atoms contained a dense nucleus and a lot of empty space was an important step in the development of the understanding of atomic structure.

Why not read more about the development of the theory of Rutherford Scattering ?

You may also like

Areas and Ratios

Do you have enough information to work out the area of the shaded quadrilateral?

Napoleon's Hat

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

Plane to See

P is the midpoint of an edge of a cube and Q divides another edge in the ratio 1 to 4. Find the ratio of the volumes of the two pieces of the cube cut by a plane through PQ and a vertex.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo