Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

The Ultra Particle

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Student Solutions

$E = 3.2\times 10^{20} \times 1.602\times 10^{-19} = 51.264\textrm{ J}$

If we equate this to a hammer head of mass $0.5\textrm{ kg}$, being flung at some speed, we find that
$$v = 14.32\textrm{ m/s} = 52\textrm{ km/h}\;.$$
This is an absolutely vast amount of energy for a single, fundamental particle to have!

If we rearrange $E = \frac{1}{2}mv^2$, using the rest mass of the particle for m, we find that
$v = 2.5\times 10^{14}\textrm{ m/s}$, which is about a million times faster than light. We can therefore assume that the mass of the particle is greater than the rest mass.

The energy per kilo of the photon (in terms of rest mass) is $51.264/(1.67\times 10^{-27}) = 3.07 \times 10^{29}\textrm{ J/kg}\;.$

Given that the mass of the earth is only $6\times 10^{24}\textrm{ kg}$, the ball of iron would contain enough energy to propel the earth to a velocity of about $320\textrm{ m/s}$, or $1151\textrm{ km/h}$, using the formula for kinetic energy.

Perhaps it maybe might just pass straight through the Earth, vaporising everything it touched, leaving the bulk a little shaken, but intact. Even one proton possessing this energy is extremely rare though, thankfully

If you rearrange the given formula to $v = c\sqrt{1 - \left(\frac{m_0c}{E}\right)^2} \approx 3\times 10^{8}\textrm{ m/s}$, i.e. as far as my calculator is concerned, almost the speed of light.

You may also like

Lunar Leaper

Gravity on the Moon is about 1/6th that on the Earth. A pole-vaulter 2 metres tall can clear a 5 metres pole on the Earth. How high a pole could he clear on the Moon?

High Jumping

How high can a high jumper jump? How can a high jumper jump higher without jumping higher? Read on...

Whoosh

A ball whooshes down a slide and hits another ball which flies off the slide horizontally as a projectile. How far does it go?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo