Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Heavy Hydrocarbons

Age 14 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Note that in actuality the masses of the different isotopologues of $\text{CH}_4$ are slightly different. These differences may be noted by a very sensitive mass spectrometer. Take for example:

RMM $^{12}\text{CH}_3\text{D}$ = 12 + 3(1.007825) + 2.014102 = 17.037577 gmol$^{-1}$
RMM $^{13}\text{CH}_4$ = 13.00335 + 4(1.007825) = 17.03465 gmol$^{-1}$
where the calculation is limited by the degree of accuracy of the given data.

However in this question it is acceptable to take values to the nearest gmol$^{-1}$, giving roughly equal molecular masses for certain isotopes.

$^{12}\text{CH}_4$ = 16 gmol$^{-1}$
$^{12}\text{CH}_3\text{D}$, $^{13}\text{CH}_4$ = 17 gmol$^{-1}$
$^{12}\text{CH}_2\text{D}_2$, $^{13}\text{CH}_3\text{D}$ = 18 gmol$^{-1}$
$^{12}\text{CHD}_3$, $^{13}\text{CH}_2\text{D}_2$ = 19 gmol$^{-1}$
$^{12}\text{CD}_4$, $^{13}\text{CHD}_3$ = 20 gmol$^{-1}$
$^{13}\text{CD}_4$ = 21 gmol$^{-1}$

The three most common species encountered would be $^{12}\text{CH}_4$, $^{13}\text{CH}_4$ and $^{12}\text{CH}_3\text{D}$ in order of likelihood. This can bee seen intuitively as the probability of encountering a $^{13}\text{C}$ more likely than encountering a single $^{2}\text{H}$, and for a small molecule such as methane, it is far more likely to obtain $^{12}\text{CH}_4$ than either of the other possibilities. The three most likely molecular masses as 16, 17 and 18 gmol$^{-1}$ as the introduction of more $^{13}\text{C}$ and $^{2}\text{H}$ to a small molecule reduces its likelihood more than any combinatorial effects can compensate for.

The actual probabilities of encountering each of these molecular masses of methane are:

16 gmol$^{-1}$ [$^{12}\text{CH}_4$]
$\textbf P(16 \text{gmol}^{-1}) = 0.989 \times (0.99985)^4 = 0.988$ (3sf)

17 gmol$^{-1}$ [$^{12}\text{CH}_3\text{D}$, $^{13}\text{CH}_4$]
$\textbf P(17 \text{gmol}^{-1}) = (0.989\times^4\textbf{C}_1(0.00015)\times (0.99985)^3
) + (0.011 \times (0.99985)^4) = 0.0116$ (3sf)

18 gmol$^{-1}$ [$^{12}\text{CH}_2\text{D}_2$, $^{13}\text{CH}_3\text{D}$]
$\textbf P(18 \text{gmol}^{-1}) = (0.989\times^4\textbf{C}_2(0.00015)^2\times (0.99985)^2 ) + (0.011\times^4\textbf{C}_1(0.00015)\times (0.99985)^3) = 6.73\times10^{-6}$ (3sf)

19 gmol$^{-1}$ [$^{12}\text{CHD}_3$, $^{13}\text{CH}_2\text{D}_2$]
$\textbf P(19 \text{gmol}^{-1}) = (0.989\times^4\textbf{C}_3(0.00015)^3\times 0.99985 ) + (0.011\times^4\textbf{C}_2(0.00015)^2\times (0.99985)^2) = 1.50\times10^{-9}$ (3sf)

20 gmol$^{-1}$ [$^{12}\text{CD}_4$, $^{13}\text{CHD}_3$]
$\textbf P(20 \text{gmol}^{-1}) = (0.989\times^4\textbf{C}_4(0.00015)^4) + (0.011\times^4\textbf{C}_3(0.00015)^3\times 0.99985) = 1.49\times10^{-13}$ (3sf)

21 gmol$^{-1}$ [$^{13}\text{CD}_4$]
$\textbf P(21 \text{gmol}^{-1}) = (0.011\times^4\textbf{C}_4(0.00015)^4) = 5.57\times10^{-18}$ (3sf)

Following a similar principle to that above, the three most likely possibilities for the molecular masses of ethane are 30, 31 and 32 gmol$^{-1}$ in order of likelihood.

$^{12}\text{C}_2\text{H}_6$ = 30 gmol$^{-1}$
$^{12}\text{CD}_2\text{H}_5$, $^{12}\text{C}^{13}\text{C}\text{H}_6$ = 31 gmol$^{-1}$
$^{12}\text{C}_2\text{H}_4\text{D}_2$, $^{12}\text{C}^{13}\text{CD}\text{H}_5$, $^{13}\text{C}_2\text{H}_6$ = 32 gmol$^{-1}$

$\textbf P(30 \text{gmol}^{-1}) = (0.989)^2 \times (0.99985)^6 = 0.977$ (3sf)

$\textbf P(31 \text{gmol}^{-1}) = ((0.989)^2 \times ^6\textbf{C}_10.00015 \times (0.99985)^ 5) + ((0.989)\times^2\textbf{C}_1(0.011)\times(0.99985)^ 6) = 0.0226$ (3sf)

$\textbf P(32 \text{gmol}^{-1}) = ((0.989)^2 \times ^6\textbf{C}_2(0.00015)^2 \times (0.99985)^ 4) + ((0.989)\times^2\textbf{C}_1(0.011)\times^6\textbf{C}_1(0.00015)\times(0.99985)^ 5)$
$+ (^2\textbf{C}_2(0.011)^2 \times (0.99985)^6) = 1.41 \times 10^{-4} \text{ (3sf)}$

The three most likely possibilities for the molecular mass of propane are 44, 45 and 46 gmol$^{-1}$ in order of likelihood.

$^{12}\text{C}_3\text{H}_8$ = 44 gmol$^{-1}$
$^{12}\text{C}_2{}^{13}\text{C}\text{H}_8$, $^{12}\text{C}_3\text{D}\text{H}_7 = 45\text {gmol}^{-1}$
$^{12}\text{C}^{13}\text{C}_2\text{H}_8$, $^{12}\text{C}_2^{13}\text{C}\text{D}\text{H}_7, ^{12}\text{C}_3\text{D}_2\text{H}_ 6 = 46\text {gmol}^{-1}$

$\textbf P(44 \text{gmol}^{-1}) = (0.989)^3 \times (0.99985)^8 = 0.966$ (3sf)

$\textbf P(45 \text{gmol}^{-1}) = (^3\textbf{C}_1 \times 0.011 \times (0.989)^2 \times (0.99985)^ 8) + ((0.989)^3\times^8\textbf{C}_1(0.00015)\times(0.99985)^ 7) = 0.0334$ (3sf)

$\textbf P(46 \text{gmol}^{-1}) = (^3\textbf{C}_2 \times (0.011)^2 \times 0.989 \times (0.99985)^ 8) + (^3\textbf{C}_1 \times 0.011 \times (0.989)^2 \times^8\textbf{C}_1(0.00015)\times(0.99985)^ 7)$
$+ ((0.989)^3\times^8\textbf{C}_2(0.00015)^2\times(0.99985)^ 6) = 3.98 \times 10^{-4}$ (3sf)


A molecule of butane with molecular mass 72 is the isotopologue $^{13}\text{C}_4\text{D}_{10}$. The probability of any butane molecule being this isotopologue is:

$\textbf{P}(^{13}\text{C}_4\text{D}_{10}) = 0.011^4 \times 0.00015^{10} = 8.44 \times 10^{-47}$ (3sf)

24dm$^3$ of butane corresponds to roughly 1 mole of butane molecules. Thus, as 1 dm$^3$ is equivalent to a litre, the number of moles in the required volume is $\frac{1}{24}$.

The number of molecules in the sample is given by multiplying the number of moles, by the number of molecules in a mole (the Avogadro's constant):

Number of molecules $= \frac{N_A}{24} = 2.51 \times 10^{22}$

So the likelihood can be found by multiplying the probability for one molecule by the total number of molecules in the sample.

$\therefore\text{E}(^{13}\text{C}_4\text{D}_{10}) = 2.51 \times 10^{22} \times 8.44 \times 10^{-47} = 2.12 \times 10^{-24}$

This question requires a little more algebraic appreciation of the calculations thusfar.
The probability of encountering a generic alkane $^{12}\text{C}_n{}^1\text{H}_{2n + 2}$ is given by:

$\textbf{P} = 0.989^n \times (0.99985)^{2n + 2}$

The probability of encountering an isotopologue containing deuterium $^{12}\text{C}_n^{\ 1}\text{H}_{2n + 1}\text{D}$ is given by:

$\textbf{P} = 0.989^n \times ^{2n + 2}\textbf{C}_1(0.99985)^{2n + 1}\times 0.00015$

The probability of encountering this isotopologue must be greater than the likelihood of finding the butane molecule consisting entirely of $^{12}\text{C}$ and H.

$0.989^n \times ^{2n + 2}\textbf{C}_1 \times (0.99985)^{2n + 1}\times 0.00015$ > $0.989^n \times (0.99985)^{2n + 2}$

$0.00015 (2n + 2)$ > 0.99985

2n + 2 > 6665.666667

n > 3331.833333

n = 3332

Is this long chain alkane likely to exist in a real sample?

The probability of encountering an isotopologue containing $^{13}\text{C}$ is given by:

$\textbf{P} = ^n\textbf{C}_1\times 0.011 \times 0.989^{n-1} \times (0.99985)^{2n + 2}$

This probability must be greater than the likelihood of finding the alkane molecule consisting entirely of $^{12}\text{C}$ and H. So:

$^n\textbf{C}_1\times 0.011 \times (0.989)^{n-1} \times (0.99985)^{2n + 2}$ > $0.989^n \times (0.99985)^{2n + 2}$

$ \text{n} \times (0.989)^{n-1} \times 0.011$ > $(0.989)^{n}$

$0.011\text{n}$ > 0.989

$\text{n}$ > 89.90909091

n = 90

Consider the likelihood of the existence of this molecule.

As an extension, does the probability of the existence of such molecules change if the molecule is produced via a method which involves polymerisation? Try to construct an algebraic test.


















You may also like

A Method of Defining Coefficients in the Equations of Chemical Reactions

A simple method of defining the coefficients in the equations of chemical reactions with the help of a system of linear algebraic equations.

Mathematical Issues for Chemists

A brief outline of the mathematical issues faced by chemistry students.

Reaction Rates

Explore the possibilities for reaction rates versus concentrations with this non-linear differential equation

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo