Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Sticky Numbers

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem requires some knowledge of square numbers, but more importantly requires students to think strategically and provide convincing arguments and justifications for their findings

Possible approach

Introduce the problem using the example $10, 15, 21, 4, 5$, explaining that this list of numbers is special because each pair of adjacent numbers add up to make a square number.

Set them the challenge to produce a similar list using all the numbers from $1$ to $17$. Hand out sets of these cards and ask students to work in pairs on this challenge.

After the class have had a few minutes to work on this, add that you would like to know all the possible different ways of making such a list. Challenge them to produce a convincing argument that they have found all the possibilities.

Finally, ask students to present their solutions and justifications to the rest of the class.

An alternative starting point for this lesson could be to ask for 17 volunteers to stand at the front holding one of these cards. With help from the rest of the class, ask them to arrange themselves to satisfy the criteria above. Once they have found a solution, ask them to work in pairs as outlined above to find all the possible arrangements and justify that they have the complete set.

Key questions

Are there any numbers which cannot be linked to another number?
Are there any numbers which can only link to one other number?
Are there any numbers which can only link to two numbers?
Are there any numbers which can link to more than two numbers?
How do you know you've found every possible solution?
 

Possible support

Students could make a table listing the numbers which can be paired with each of the numbers from $1$ to $17$ to make a square total.

Possible extension

This graph has the numbers from $1$ to $31$ at its vertices. Each edge connects two numbers which add together to make a square number.

Can you use the graph to produce a list of all the numbers from $1$ to $31$ so that pairs of adjacent numbers add up to a square number? Is there more than one way to do it?



Can you find any other numbers $n$ less than $31$ so that all the numbers from $1$ to $n$ can be written in a list in this way? How does the graph help you? Here is a printable version of the graph.

Related Collections

  • Working Systematically - Lower Secondary
  • Working Systematically - short problems

You may also like

Time of Birth

A woman was born in a year that was a square number, lived a square number of years and died in a year that was also a square number. When was she born?

Square Routes

How many four digit square numbers are composed of even numerals? What four digit square numbers can be reversed and become the square of another number?

Digat

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo